Skip to navigation | Skip to main content | Skip to footer

New X-ray vision can reveal internal structure of objects

03 Oct 2013

Scientists have developed a new kind of ‘X-ray vision’ that is able to peer inside an object and map the three-dimensional distribution of its nano-properties in real time.

The new imaging technique can reveal the nano-properties of objects

University of Manchester researchers, working with colleagues in the UK, Europe and the US, say the novel imaging technique could have a wide range of applications across many disciplines, such as materials science, geology, environmental science and medical research.

“This new imaging method – termed Pair Distribution Function-Computed Tomography – represents one of the most significant developments in X-ray micro tomography for almost 30 years,” said Professor Robert Cernik in Manchester’s School of Materials.

“Using this method we are able to image objects in a non-invasive manner to reveal their physical and chemical nano-properties and relate these to their distribution in three-dimensional space at the micron scale.

“Such relationships are key to understanding the properties of materials and so could be used to look at in-situ chemical reactions, probe stress-strain gradients in manufactured components, distinguish between healthy and diseased tissue, identify minerals and oil-bearing rocks or identify illicit substances or contraband in luggage.”

The research, published in the journal Nature Communications, explains how the new imaging technique uses scattered X-rays to form a three-dimensional reconstruction of the image.

“When X-rays hit an object they are either transmitted, absorbed or scattered,” explained Professor Cernik. “Standard X-ray tomography works by collecting the transmitted beams, rotating the sample and mathematically reconstructing a 3D image of the object. This is only a density contrast image, but by a similar method using the scattered X-rays instead we can obtain information about the structure and chemistry of the object even if it has a nanocrystalline structure.

“By using this method we are able to build a much more detailed image of the object and, for the first time, separate the nanostructure signals from the different parts of a working device to see what the atoms are doing in each location, without dismantling the object.”

Ends

Notes for editors

The international research team included scientists from The University of Manchester, University College London, the European Synchrotron Radiation Facility, Grenoble, the US Department of Energy’s Brookhaven National Laboratory and Columbia University, New York.

A copy of the paper, entitled ‘Pair Distribution Function-Computed Tomography,’ published in Nature Communications, is available here.

For further information contact:

Aeron Haworth
Media Relations
Faculty of Engineering and Physical Sciences
The University of Manchester

Tel: 0161 275 8387
Mob: 07717 881563
Email: aeron.haworth@manchester.ac.uk