Skip to navigation | Skip to main content | Skip to footer
Search

Putting sunshine in the tank

05 Jul 2011

Scientists from The University of Manchester are working on how to use the energy of the Sun to make fuels, which could help to solve the world’s escalating energy crisis.

Glowing quantum dots, courtesy Nanoco Technologies
Glowing quantum dots, courtesy Nanoco Technologies

Working with the Universities of East Anglia, York and Nottingham and using nanotechnology 100,000 times smaller than the thickness of a human hair, the researchers are working on harnessing the vast energy of the Sun to produce clean fuel. 

The scientists are presenting their research at the Royal Society’s annual Summer Science Exhibition which opens today. 

Members of the consortium at UEA have already found a way to produce hydrogen from water.  A revolutionary future use of this technology could be to make the fuel for hydrogen-powered cars, rather than making it from fossil fuel.

Now the scientists are aiming to use the same technology to create alternatives for other fuels and feedstock chemicals, including turning methane into liquid methanol and carbon dioxide into carbon monoxide.

Photo courtesy of Nanoco Technologies

The sun’s potential is vast – just one hour of sunlight is equivalent to the amount of energy used over the world in an entire year – yet no one has yet tapped into its immense power to make fuels.

Professor Wendy Flavell, from The University of Manchester’s Photon Science Institute, and her colleagues are working to create a solar-nano device using ‘quantum dots’ – tiny clusters of semiconducting material which absorb sunlight.

When sunlight is absorbed, carriers of electric current are created.  Together with catalyst molecules grafted to the surfaces of the dots, these create the new fuel – for example hydrogen can be produced from water.  Professor Flavell said: “Our sun provides far more energy than we will ever need, but we use it really inefficiently. 

“To make better use of the fantastic resource we have in our Sun, we need to find out how to create solar fuel that can be stored and shipped to where it is needed and used on demand.

“Most hydrogen so far is obtained from fossil fuels, which are of course not going to last for ever, so it is important to get energy from renewable sources.“One of the key questions is: ‘what do we do when the sun goes down, what happens at night?’ If we can store the energy harnessed from the sun during the day then we will have supplies ready to use when the sun is not shining.

“This is a first step in taking the vast power of the sun and using it to provide the world’s fuel needs.” 

At the exhibition, Professor Flavell and her team will be displaying an interactive world map which will show children and other visitors just how much energy the Sun provides.

There will also be a chance to see the quantum dots at work, and show how, simply by changing the size of the dots, the colour of light they absorb or give out can be changed.

A solar cell that produces hydrogen directly from the electricity generated will also be on display and there will be a chance to race solar-powered and hydrogen-powered model racing cars.

Professor Chris Pickett of the University of East Anglia said "Creating catalytic devices which harvest light energy using quantum dots, or photovoltaic materials  to drive the formation of synthetic fuels from water or carbon dioxide can be viewed as artificial photosynthesis.

“Globally, chemists, physicists and materials scientists are coming together to work on artificial photosynthesis to get to a stage where we can viably make clean, green fuels"      

Professor Robin Perutz of the University of York said:"This is the most challenging scientific project I have ever been involved in, but it will be the most rewarding if we can bring it off. It's no use sitting back and hoping that someone else will work out how to harness the Sun's energy. This technology could revolutionise our energy usage in the coming decades."
 

Notes for editors

The exhibit is described at the Royal Society Science Live webpage:http://royalsociety.org/summer-science/2011/solar-nanotech/

The scientists will be on hand at the exhibition which runs from 5 July to 10 July, to talk visitors through their research.

Images of the quantum dots and a hydrogen solar fuel cell are all available from the Press Office on request.
Relevant papers include:
 
Water splitting by visible light: A nanophotocathode for hydrogen production, T Nann, S K Ibrahim, P M Woi, S Xu, J Zeigler and C J Pickett http://onlinelibrary.wiley.com/doi/10.1002/anie.200906262/abstract

Efficient carrier multiplication in InP nanoparticles, S. K. Stubbs, S. J. O. Hardman, D. M. Graham, B. F. Spencer, W. R. Flavell, P. Glarvey, O. Masala, N. Pickett and D. J. Binks
http://prb.aps.org/abstract/PRB/v81/i8/e081303

Remote site photosubstitution in metalloporphyrin-rhenium bipyridine tricarbonyl assemblies: photo-reactions of molecules with very short-lived states, A Gabrielsson, J Lindsay-Smith and R N Perutz
http://pubs.rsc.org/en/Content/ArticleLanding/2008/DT/b806267f

Institutions involved in the research include The University of Manchester, The University of York, University of East Anglia (UEA) and The University of Nottingham.

Professor Flavell is available for interview on request.

For media enquiries please contact

Daniel Cochlin
Media Relations Officer
The University of Manchester
0161 275 8387
daniel.cochlin@manchester.ac.uk

The Royal Society

1.    A press preview will take place between 3pm – 5pm on Monday 4 July. Please contact the Royal Society press office to make arrangements to attend this.

2.    General info:  The Royal Society Summer Science Exhibition showcases cutting edge research in science and engineering from across the UK. It is held annually at the Royal Society, the UK’s national academy of science. Follow the Summer Science Exhibition on Twitter at www.twitter.com/summerscience using the hashtag #SSE2011.

3.    Exhibition opening times:  The Exhibition is located in the Royal Society, 6-9 Carlton House Terrace, London, SW1Y 5 AG and takes place from Tuesday 5 July to Sunday 10 July 2011. Open Tuesday 5 July 10am – 9pm, Wednesday 6 – Thursday 7 July 10am – 5pm, Friday 8 July 10am – 9pm, Saturday 9 July 10am – 6pm, Sunday 10 July 11am – 6pm.  The event is FREE and open to the public.  Further information can be found at http://royalsociety.org/summer-science/2011/.

4.    The Royal Society is the UK’s national academy of science.  Founded in 1660, the Society has three roles, as a provider of independent scientific advice, as a learned Society, and as a funding agency. Our expertise is embodied in the Fellowship, which is made up of the finest scientists from the UK and beyond.  Our goals are to:

•    Invest in future scientific leaders and in innovation
•    Influence policymaking with the best scientific advice
•    Invigorate science and mathematics education
•    Increase access to the best science internationally
•    Inspire an interest in the joy, wonder and excitement of scientific discovery

For further information please visit http://royalsociety.org. Follow the Royal Society on Twitter at http://twitter.com/royalsociety or on Facebook at http://www.facebook.com/theroyalsociety.