Working together to improve cancer treatment with new proton imaging technology


Engineers, scientists and clinicians are to working together develop new imaging technology that could provide more accurate cancer treatments.

The collaborative project between The University of Manchester, Lancaster University, The Christie NHS Foundation Trust and CERN will develop a prototype ‘X-band linac structure’ that can be retro-fitted on proton beam therapy equipment, which is used in complex radiotherapy treatments at over 50 hospitals around the world. This will enable proton imaging of adults that can help improve the accuracy of proton therapy.

Radiotherapy with protons is important in some cancer treatments, as its greater treatment accuracy can reduce side effects - for example, when treating some cancers in children. Whilst two new NHS treatment centres are under construction in the UK that will provide state-of-the-art proton treatments, the proton imaging based on this prototype will enable the most accurate pre-treatment images of patients, improving on the x-ray imaging used today.

Proton imaging requires more energetic protons than are used in treatment, which can pass right through the patient. A very small imaging dose of protons – much smaller than that used for treatment – travels through the body region to be imaged, and the remaining energy of the protons is measured to find out how much was lost on their way through the body which allows a picture of that volume to be taken using tomographic techniques. In this project, a prototype will be built of a novel high-frequency linac that can boost the energy of protons from the 250 Mega-electron volts (MeV) available from conventional medical cyclotrons to 350 MeV, sufficient for imaging all patients.

The University of Manchester’s Dr Hywel Owen, who developed the booster concept
Whilst detectors for proton imaging are now being developed by several research groups, there is as yet no compact and cost-effective method of providing the 350 MeV protons needed for adults. Bridging this gap is the aim of our project.
The University of Manchester’s Dr Hywel Owen, who developed the booster concept

Dr Graeme Burt, senior lecturer at Lancaster University’s Engineering Department and lead researcher on the project, said: “Proton imaging will increase the accuracy of proton treatments to under one millimetre, which really counts when treating tumours near sensitive organs.”

Dr Ranald MacKay, Director of Christie Medical Physics & Engineering, said: “As well as developing a clinical facility to treat 750 patients a year, The Christie proton centre will be a national facility for proton research. This project is a good example of how scientists will work together to improve proton therapy in Manchester.”

The design of the technology will be tested with the assistance of CERN, which has suitable existing X-band power systems and infrastructure. A successful demonstration will be translated into clinical use for the benefit of patients in the UK and abroad.The project’s £120,000 costs have been assisted by the project partners and by the national Cockcroft Institute for Accelerator Science and Technology, using an award from the UK Science and Technology Facilities Council.

Share this release

Latest news