In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Using a novel small molecule inhibitor to investigate the role of Mps1 kinase activity

Hewitt, Laura

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

During mitosis, accurate chromosome segregation is essential: gain or loss of genetic information can be detrimental to cell viability, or promote tumourigenesis. The mitotic checkpoint (also known as the spindle assembly checkpoint or SAC) ensures accurate chromosome segregation by delaying cell cycle progression until accuracy can be guaranteed. Mps1 is a protein kinase that is crucial for mitotic checkpoint signalling and also for proper chromosome alignment at metaphase. However, the precise role of Mps1’s catalytic activity is still unclear. Here, I present AZ3146, a novel small molecule inhibitor of Mps1. AZ3146 inhibits recombinant Mps1 in vitro with an IC50 of ~35 nM, and has low activity against a panel of 50 kinases, suggesting a reasonable degree of selectivity. As predicted for an Mps1 inhibitor, AZ1346 treatment led to spindle checkpoint malfunction in cells, accelerated mitotic timing, and perturbed the kinetochore localisation of the checkpoint effector Mad2. AZ3146 has a negative effect on cell viability, suggesting it leads to detrimental missegregations. Thus, the cellular effects of AZ3146 are consistent with Mps1 inhibition, and I was able to use the compound confidently as a tool to further probe the role of Mps1 activity in cells.Strikingly, levels of Mps1 increased at unattached kinetochores following inhibition of its kinase activity, suggesting Mps1’s kinetochore localisation is regulated by its own activity. A kinase-dead GFP-Mps1 fusion protein only accumulated at kinetochores in the absence of endogenous, active Mps1, implicating intra-molecular interactions in regulation of Mps1’s kinetochore localisation. I confirm a role for Mps1 in the mechanism of chromosome alignment, but in contrast to previous reports I did not detect a decrease in Aurora B activity following Mps1 inhibition. On the contrary, both Mps1’s phosphorylation status and its kinetochore localisation were affected by treatment with the Aurora B inhibitor ZM447439, placing Mps1 downstream of Aurora B. As an alternative explanation for the alignment defect in cells with reduced Mps1 activity, I found that levels of the plus-end directed kinesin Cenp-E were markedly decreased at unaligned kinetochores. I propose a model in which catalytically active Mps1’s auto-release from kinetochores simultaneously promotes both mitotic checkpoint signalling and chromosome alignment by facilitating Mad2 dimerisation and Cenp-E binding at unattached kinetochores.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Biochemistry
Publication date:
Location:
Manchester, UK
Total pages:
175
Abstract:
During mitosis, accurate chromosome segregation is essential: gain or loss of genetic information can be detrimental to cell viability, or promote tumourigenesis. The mitotic checkpoint (also known as the spindle assembly checkpoint or SAC) ensures accurate chromosome segregation by delaying cell cycle progression until accuracy can be guaranteed. Mps1 is a protein kinase that is crucial for mitotic checkpoint signalling and also for proper chromosome alignment at metaphase. However, the precise role of Mps1’s catalytic activity is still unclear. Here, I present AZ3146, a novel small molecule inhibitor of Mps1. AZ3146 inhibits recombinant Mps1 in vitro with an IC50 of ~35 nM, and has low activity against a panel of 50 kinases, suggesting a reasonable degree of selectivity. As predicted for an Mps1 inhibitor, AZ1346 treatment led to spindle checkpoint malfunction in cells, accelerated mitotic timing, and perturbed the kinetochore localisation of the checkpoint effector Mad2. AZ3146 has a negative effect on cell viability, suggesting it leads to detrimental missegregations. Thus, the cellular effects of AZ3146 are consistent with Mps1 inhibition, and I was able to use the compound confidently as a tool to further probe the role of Mps1 activity in cells.Strikingly, levels of Mps1 increased at unattached kinetochores following inhibition of its kinase activity, suggesting Mps1’s kinetochore localisation is regulated by its own activity. A kinase-dead GFP-Mps1 fusion protein only accumulated at kinetochores in the absence of endogenous, active Mps1, implicating intra-molecular interactions in regulation of Mps1’s kinetochore localisation. I confirm a role for Mps1 in the mechanism of chromosome alignment, but in contrast to previous reports I did not detect a decrease in Aurora B activity following Mps1 inhibition. On the contrary, both Mps1’s phosphorylation status and its kinetochore localisation were affected by treatment with the Aurora B inhibitor ZM447439, placing Mps1 downstream of Aurora B. As an alternative explanation for the alignment defect in cells with reduced Mps1 activity, I found that levels of the plus-end directed kinesin Cenp-E were markedly decreased at unaligned kinetochores. I propose a model in which catalytically active Mps1’s auto-release from kinetochores simultaneously promotes both mitotic checkpoint signalling and chromosome alignment by facilitating Mad2 dimerisation and Cenp-E binding at unattached kinetochores.
Thesis main supervisor(s):
Thesis advisor(s):
Language:
en

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:104768
Created by:
Hewitt, Laura
Created:
7th January, 2011, 16:57:39
Last modified by:
Hewitt, Laura
Last modified:
22nd June, 2014, 18:08:01

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.