In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Kinematics and physical properties of young proto-clusters

Cabral, Ana Isabel Duarte

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

The formation of stars begins with the fragmentation of molecular clouds and the formation of dense cores. This fragmentation process can either be the result of classical gravitational instabilities or triggered by some external event. The gas and dust of young protoclusters often hold the imprints of the initial conditions and triggers of that specific star forming episode.In this context, my thesis work is a study of the gas properties of young protoclus- ters within the Gould Belt. The first part of my work consists of a detailed study of the young Serpens star forming region with CO isotopologues. This study has revealed a complex temperature, column density and velocity structure. I proposed a scenario where a collision between two filamentary clouds or flows is responsible for the observed complex structure and the most recent burst of star formation in Serpens. This hypothesis was tested with SPH simulations and provides a plausible scenario.I am currently extending this work to other regions with a variety of star formation efficiencies, in search of the particular physical properties and dynamics of a molecular cloud that allow or prevent clouds to be in the verge of forming stars. As such, I have included in this manuscript my study of the gas in the B59 star forming region, the only active clump in the Pipe Nebula. The results from this study have shown it to be very different from Serpens, even though further studies are needed to provide a complete picture of the region. B59 was taken as the starting point for a larger study of the entire Pipe Nebula, driven by the peculiarly low star formation efficiency in the cloud and a test to the physical properties of cores prior to star formation.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD in Astronomy and Astrophysics
Publication date:
Location:
Manchester, UK
Total pages:
210
Abstract:
The formation of stars begins with the fragmentation of molecular clouds and the formation of dense cores. This fragmentation process can either be the result of classical gravitational instabilities or triggered by some external event. The gas and dust of young protoclusters often hold the imprints of the initial conditions and triggers of that specific star forming episode.In this context, my thesis work is a study of the gas properties of young protoclus- ters within the Gould Belt. The first part of my work consists of a detailed study of the young Serpens star forming region with CO isotopologues. This study has revealed a complex temperature, column density and velocity structure. I proposed a scenario where a collision between two filamentary clouds or flows is responsible for the observed complex structure and the most recent burst of star formation in Serpens. This hypothesis was tested with SPH simulations and provides a plausible scenario.I am currently extending this work to other regions with a variety of star formation efficiencies, in search of the particular physical properties and dynamics of a molecular cloud that allow or prevent clouds to be in the verge of forming stars. As such, I have included in this manuscript my study of the gas in the B59 star forming region, the only active clump in the Pipe Nebula. The results from this study have shown it to be very different from Serpens, even though further studies are needed to provide a complete picture of the region. B59 was taken as the starting point for a larger study of the entire Pipe Nebula, driven by the peculiarly low star formation efficiency in the cloud and a test to the physical properties of cores prior to star formation.
Thesis main supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:108876
Created by:
Cabral, Ana
Created:
20th January, 2011, 13:45:09
Last modified by:
Cabral, Ana
Last modified:
7th April, 2011, 11:17:18

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.