In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The Development of Artificial Muscles Using Textile Structures

Stubbs, Laura Kate

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

The aim of this project was to investigate the use of textile structures as muscles to assist people with muscular deficiency or paralysis. Due to the average life expectancy continuing to increase, support for those needing assistance to move unaided is also increasing. The purpose of this project was to try to help a patient who would normally need assistance, to move their arm unaided. It could also help with rehabilitation of muscular injuries and increasing strength and reducing muscular fatigue of manual workers. The approach considered was to develop an extra corporal device for the upper limbs, providing the main required motions. Most devices currently available use motors and gearboxes to assist in limb movement. This study investigated a way of mimicking the contraction of biological skeletal muscles to create a motion that is as human as possible with a soft, flexible and lightweight construction. Electroactive polymers (EAPs) and pneumatic artificial muscles (PAMs) were investigated. It became clear that at present, the EAPs were unable to create the forces and speed of contraction required for this application. The use of pneumatics to create artificial muscles was developed upon. PAMs, like the McKibben muscle and the pleated pneumatic muscle mimic the natural contraction of skeletal muscle. These current PAMs were used as a basis to develop a new type of pneumatic artificial muscle in this project. A 90 mm ball-like structure was developed, produced from an air impermeable rubber coated cotton fabric. Joining three oval panels together created a 3-D spherical shape. Three of these structures were linked together, and when inflated, created an acceptable level of contraction and force. This method of producing artificial muscles created a soft, lightweight and flexible actuator with scope for different arrangements, sizes and positions of the muscle structure. The contraction process was mathematically modelled. This calculated the predicted rate and level of contraction of a 2-D muscle structure. These mathematical findings were able to be compared to the practical results, and produced similar contraction characteristics. The muscle structures were incorporated into a garment to form a type of muscle suit which could be worn to assist movement. This garment has an aluminium frame to protect the wearer’s bones from stresses from the contracting muscles. This study has shown that the muscle suit developed can create movement for wearers that would normally need assistance, and also reduce muscle fatigue, which would be useful for manual workers. This is incorporated into a functional and wearable garment, which is easy to dress and more lightweight and aesthetically pleasing than current muscle suits.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Textiles
Publication date:
Location:
Manchester, UK
Total pages:
241
Abstract:
The aim of this project was to investigate the use of textile structures as muscles to assist people with muscular deficiency or paralysis. Due to the average life expectancy continuing to increase, support for those needing assistance to move unaided is also increasing. The purpose of this project was to try to help a patient who would normally need assistance, to move their arm unaided. It could also help with rehabilitation of muscular injuries and increasing strength and reducing muscular fatigue of manual workers. The approach considered was to develop an extra corporal device for the upper limbs, providing the main required motions. Most devices currently available use motors and gearboxes to assist in limb movement. This study investigated a way of mimicking the contraction of biological skeletal muscles to create a motion that is as human as possible with a soft, flexible and lightweight construction. Electroactive polymers (EAPs) and pneumatic artificial muscles (PAMs) were investigated. It became clear that at present, the EAPs were unable to create the forces and speed of contraction required for this application. The use of pneumatics to create artificial muscles was developed upon. PAMs, like the McKibben muscle and the pleated pneumatic muscle mimic the natural contraction of skeletal muscle. These current PAMs were used as a basis to develop a new type of pneumatic artificial muscle in this project. A 90 mm ball-like structure was developed, produced from an air impermeable rubber coated cotton fabric. Joining three oval panels together created a 3-D spherical shape. Three of these structures were linked together, and when inflated, created an acceptable level of contraction and force. This method of producing artificial muscles created a soft, lightweight and flexible actuator with scope for different arrangements, sizes and positions of the muscle structure. The contraction process was mathematically modelled. This calculated the predicted rate and level of contraction of a 2-D muscle structure. These mathematical findings were able to be compared to the practical results, and produced similar contraction characteristics. The muscle structures were incorporated into a garment to form a type of muscle suit which could be worn to assist movement. This garment has an aluminium frame to protect the wearer’s bones from stresses from the contracting muscles. This study has shown that the muscle suit developed can create movement for wearers that would normally need assistance, and also reduce muscle fatigue, which would be useful for manual workers. This is incorporated into a functional and wearable garment, which is easy to dress and more lightweight and aesthetically pleasing than current muscle suits.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:109304
Created by:
Stubbs, Laura
Created:
21st January, 2011, 12:47:55
Last modified by:
Stubbs, Laura
Last modified:
18th November, 2014, 19:13:32

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.