In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Monitoring the connectivity of hydrological pathways in a peatland headwater catchment.

Goulsbra, Claire Susan

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

Variations in drainage density have been observed in a range of environments as the perennial stream network expands into headwater reaches. This network expansion and contraction results in large changes in drainage density and as such, has implications for the connectivity of the catchment and the associated flux of water, sediments and solutes. One environment where these changes have been observed is peatlands. The accurate characterisation of catchment connectivity in peatlands is desirable for a number of reasons, not least to understand the controls on carbon flux. In addition, the accurate characterisation of these systems will help us to predict the impacts of a changing climate.It is hitherto been difficult to quantify changes in connectivity due to the logistical difficulties of monitoring this phenomenon. The use of Electrical Resistance (ER) technology has shown potential to detect the presence and absence of water. This method is built on here and a range of sensors are developed to monitor connectivity at high temporal and spatial resolutions, specifically flow in ephemeral portions of the channel network, pipeflow and overland flow. The study takes places in the Upper North Grain research catchment, a small peatland headwater catchment in the south Pennines, UK. The data collected on ephemeral streamflows highlight the importance of water table as a control on changes in network extent in the study catchment, as the presence or absence of flow at each site is strongly controlled by local water table. This allows the minimum and maximum drainage density within the catchment to be determined, as well how frequently these states occur.Pipe stormflow generation appears to be strongly linked to the production of saturation excess overland flow. The pipe network is very sensitive to small inputs of rainfall. In contrast, pipe baseflows seem to be controlled by water table level as pipes are fed by seepage from the peat mass. Pipe behaviour could not be related to any of the morphological characteristics presented here and is though to be dependent on the subsurface morphology of the pipe network.Overland flow production was monitored at a gully head and gully side location. At the gully head the incidence of overland flow increased with distance from the gully edge due to higher local water tables encouraging the production of saturation excess overland flow. At the gully side, extreme water table drawdown has caused the peat to become hydrophobic and the incidence of overland flow is high here, due to infiltration excess. This signifies a major advancement in our knowledge of runoff pathways in peatlands as the importance of infiltration excess overland flow has not been acknowledged until now.In general, ephemeral streamflows occur before the production of either overland flow or pipeflow as incident rainfall causes saturation of the gully floors. The temporal pattern of overland flow and pipeflow is similar, although pipeflow continues after overland flow ceases and is thought to be fed by shallow subsurface flow on the recession limb. Both overland flow and pipeflow precede discharge at the catchment outlet by several minutes. The interaction of these processes is examined under both ‘wet’ and ‘dry’ antecedent conditions.The data collected here provide an accurate characterisation of the dynamics of, and controls on, peatland connectivity under current climatic conditions, providing a reference point to which future observations can be compared.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
Research Programme: Geography
Publication date:
Location:
Manchester, UK
Total pages:
243
Abstract:
Variations in drainage density have been observed in a range of environments as the perennial stream network expands into headwater reaches. This network expansion and contraction results in large changes in drainage density and as such, has implications for the connectivity of the catchment and the associated flux of water, sediments and solutes. One environment where these changes have been observed is peatlands. The accurate characterisation of catchment connectivity in peatlands is desirable for a number of reasons, not least to understand the controls on carbon flux. In addition, the accurate characterisation of these systems will help us to predict the impacts of a changing climate.It is hitherto been difficult to quantify changes in connectivity due to the logistical difficulties of monitoring this phenomenon. The use of Electrical Resistance (ER) technology has shown potential to detect the presence and absence of water. This method is built on here and a range of sensors are developed to monitor connectivity at high temporal and spatial resolutions, specifically flow in ephemeral portions of the channel network, pipeflow and overland flow. The study takes places in the Upper North Grain research catchment, a small peatland headwater catchment in the south Pennines, UK. The data collected on ephemeral streamflows highlight the importance of water table as a control on changes in network extent in the study catchment, as the presence or absence of flow at each site is strongly controlled by local water table. This allows the minimum and maximum drainage density within the catchment to be determined, as well how frequently these states occur.Pipe stormflow generation appears to be strongly linked to the production of saturation excess overland flow. The pipe network is very sensitive to small inputs of rainfall. In contrast, pipe baseflows seem to be controlled by water table level as pipes are fed by seepage from the peat mass. Pipe behaviour could not be related to any of the morphological characteristics presented here and is though to be dependent on the subsurface morphology of the pipe network.Overland flow production was monitored at a gully head and gully side location. At the gully head the incidence of overland flow increased with distance from the gully edge due to higher local water tables encouraging the production of saturation excess overland flow. At the gully side, extreme water table drawdown has caused the peat to become hydrophobic and the incidence of overland flow is high here, due to infiltration excess. This signifies a major advancement in our knowledge of runoff pathways in peatlands as the importance of infiltration excess overland flow has not been acknowledged until now.In general, ephemeral streamflows occur before the production of either overland flow or pipeflow as incident rainfall causes saturation of the gully floors. The temporal pattern of overland flow and pipeflow is similar, although pipeflow continues after overland flow ceases and is thought to be fed by shallow subsurface flow on the recession limb. Both overland flow and pipeflow precede discharge at the catchment outlet by several minutes. The interaction of these processes is examined under both ‘wet’ and ‘dry’ antecedent conditions.The data collected here provide an accurate characterisation of the dynamics of, and controls on, peatland connectivity under current climatic conditions, providing a reference point to which future observations can be compared.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:110622
Created by:
Goulsbra, Claire
Created:
24th January, 2011, 11:21:23
Last modified by:
Goulsbra, Claire
Last modified:
10th February, 2015, 10:31:13

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.