In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

CURRENT SOURCE INVERTERS FOR PM MACHINE CONTROL

Woolaghan, Stephen John

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

Brushless permanent magnet (PM) drive systems offer a high efficiency over a wide power/torque-speed operating envelope, however, there are a number of problems that may limit, or complicate, their operation particularly in automotive and aerospace vehicular applications, i.e. the loss of control of the power silicon gate drive circuitry during fluxweakening operation, control of high-speed low-inductance machines and the presence of large electrolytic capacitors on the inverter DC link. Current Source Inverters (CSIs) could potentially address some or all of the above issues. However, they have found little application to date due to the wide use of the Voltage Source Inverter (VSI) circuit topology.This thesis investigates feasibility of utilising Current Source Inverters (CSIs) to control permanent magnet synchronous machines in automotive and aerospace actuation systems. CSIs, switching at the fundamental frequency, were used in some of the first semiconductor based, electronic variable speed drive systems that utilised the simple, low maintenance AC induction motor. However, the rapid progress of semiconductors and discovery of Pulse Width Modulation (PWM) techniques soon resulted in the Voltage Source Inverter (VSI) replacing the CSI in all but the highest power applications. Modern power electronics and (micro-processor based) control systems mean that the advantages of VSI systems may no longer be significant and combined with the unique environmental conditions that automotive and aerospace applications present, could allow the CSI to offer advantages over VSIs in these applications.The thesis presents the switching and control logic for CSIs and mapping to the more conventional VSI logic. Analysis is made of the various loss mechanisms in VSI and CSI power circuitary. Simulation models of the VSI and CSI structures are presented and representative drive systems designed, built and tested to validate the model developed. Comparisons are made of the two inverter topologies based on power conversions and loss audits of the test validation hardware.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
214
Abstract:
Brushless permanent magnet (PM) drive systems offer a high efficiency over a wide power/torque-speed operating envelope, however, there are a number of problems that may limit, or complicate, their operation particularly in automotive and aerospace vehicular applications, i.e. the loss of control of the power silicon gate drive circuitry during fluxweakening operation, control of high-speed low-inductance machines and the presence of large electrolytic capacitors on the inverter DC link. Current Source Inverters (CSIs) could potentially address some or all of the above issues. However, they have found little application to date due to the wide use of the Voltage Source Inverter (VSI) circuit topology.This thesis investigates feasibility of utilising Current Source Inverters (CSIs) to control permanent magnet synchronous machines in automotive and aerospace actuation systems. CSIs, switching at the fundamental frequency, were used in some of the first semiconductor based, electronic variable speed drive systems that utilised the simple, low maintenance AC induction motor. However, the rapid progress of semiconductors and discovery of Pulse Width Modulation (PWM) techniques soon resulted in the Voltage Source Inverter (VSI) replacing the CSI in all but the highest power applications. Modern power electronics and (micro-processor based) control systems mean that the advantages of VSI systems may no longer be significant and combined with the unique environmental conditions that automotive and aerospace applications present, could allow the CSI to offer advantages over VSIs in these applications.The thesis presents the switching and control logic for CSIs and mapping to the more conventional VSI logic. Analysis is made of the various loss mechanisms in VSI and CSI power circuitary. Simulation models of the VSI and CSI structures are presented and representative drive systems designed, built and tested to validate the model developed. Comparisons are made of the two inverter topologies based on power conversions and loss audits of the test validation hardware.
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:110630
Created by:
Woolaghan, Stephen
Created:
24th January, 2011, 11:30:00
Last modified by:
Woolaghan, Stephen
Last modified:
7th April, 2011, 11:14:36

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.