In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The Preparation and Characterisation of Mesoporous Films for Electrochemical Applications

Jalil, Mohammad Noor

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

In this study, two kinds of mesoporous materials were prepared. The first was a silica mesostructure grown within a porous aluminium oxide membrane columnar material (hybrid-AOM). This was prepared using a sol-gel technique with Pluronic P123 triblock copolymer as the structure-directing agent and tetraethyl orthosilicate as the inorganic source. The hybrid-AOM had a similar pore size distribution to that of as-prepared SBA-15 but showed an amorphous character, as demonstrated by nitrogen adsorption and SAXRD. The second type of material was a continuous mesoporous silica thin film, prepared by the dip-coating technique using Pluronic F127 triblock copolymer as the structure-directing agent and the same silica source as hybrid-AOM. The film, which was self-assembled on substrates such as indium tin oxide (ITO), glass and gold, exhibited long-range ordered mesostructures after several treatments and aging. Grazing incidence small-angle X-ray scattering method (GISAXS) showed that the thin film contracted in a direction perpendicular to the substrate after drying and surfactant removal.Removal of the surfactant template from both materials in order to create porous silica was achieved by calcination, ethanol extraction and peroxide-Fe treatments. Calcination was found to be the best method to remove surfactant from both mesostructures (hybrid-AOM and thin film). However, this was found to cause cracking and crumpling of the hybrid-AOM with the evaporated gold being easily peeled off after calcination. Ethanol extraction was thus applied where calcination was not suitable. The surfactant removal was confirmed using an infrared spectroscopy and the structure was confirmed after extraction using 1D X-ray diffraction (XRD). The surface morphology, porosity and crystallinity of the mesostructures prepared were characterized by nitrogen adsorption, scanning electron microscopy and small angle XRD. To form modified electrodes, the hybrid-AOM template was coated by evaporation with pure gold on one side, whilst the mesostructured thin film was grown on either gold or ITO. The permeability of the void space for both hybrid and thin film samples was calculated from the cyclic voltammetry response of a neutral probe (FcMeOH). Cationic ([Ru(bpy)3]2+) and anionic (I-) electroactive species were used to observe the electrochemical response under different pH regimes. FcMeOH was also used to study the effect of KCl concentration on the silica surface charge. Gold and platinum were electrochemically deposited using mesoporous silica as a template.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry
Publication date:
Location:
Manchester, UK
Total pages:
249
Abstract:
In this study, two kinds of mesoporous materials were prepared. The first was a silica mesostructure grown within a porous aluminium oxide membrane columnar material (hybrid-AOM). This was prepared using a sol-gel technique with Pluronic P123 triblock copolymer as the structure-directing agent and tetraethyl orthosilicate as the inorganic source. The hybrid-AOM had a similar pore size distribution to that of as-prepared SBA-15 but showed an amorphous character, as demonstrated by nitrogen adsorption and SAXRD. The second type of material was a continuous mesoporous silica thin film, prepared by the dip-coating technique using Pluronic F127 triblock copolymer as the structure-directing agent and the same silica source as hybrid-AOM. The film, which was self-assembled on substrates such as indium tin oxide (ITO), glass and gold, exhibited long-range ordered mesostructures after several treatments and aging. Grazing incidence small-angle X-ray scattering method (GISAXS) showed that the thin film contracted in a direction perpendicular to the substrate after drying and surfactant removal.Removal of the surfactant template from both materials in order to create porous silica was achieved by calcination, ethanol extraction and peroxide-Fe treatments. Calcination was found to be the best method to remove surfactant from both mesostructures (hybrid-AOM and thin film). However, this was found to cause cracking and crumpling of the hybrid-AOM with the evaporated gold being easily peeled off after calcination. Ethanol extraction was thus applied where calcination was not suitable. The surfactant removal was confirmed using an infrared spectroscopy and the structure was confirmed after extraction using 1D X-ray diffraction (XRD). The surface morphology, porosity and crystallinity of the mesostructures prepared were characterized by nitrogen adsorption, scanning electron microscopy and small angle XRD. To form modified electrodes, the hybrid-AOM template was coated by evaporation with pure gold on one side, whilst the mesostructured thin film was grown on either gold or ITO. The permeability of the void space for both hybrid and thin film samples was calculated from the cyclic voltammetry response of a neutral probe (FcMeOH). Cationic ([Ru(bpy)3]2+) and anionic (I-) electroactive species were used to observe the electrochemical response under different pH regimes. FcMeOH was also used to study the effect of KCl concentration on the silica surface charge. Gold and platinum were electrochemically deposited using mesoporous silica as a template.
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:118478
Created by:
Jalil, Mohammad
Created:
9th February, 2011, 00:43:26
Last modified by:
Jalil, Mohammad
Last modified:
7th April, 2011, 11:23:40

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.