In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Grothendieck Rings of Theories of Modules

Perera, Simon

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

We consider right modules over a ring, as models of a first order theory. We explorethe definable sets and the definable bijections between them. We employ the notionsof Euler characteristic and Grothendieck ring for a first order structure, introduced byJ. Krajicek and T. Scanlon in [24]. The Grothendieck ring is an algebraic structurethat captures certain properties of a model and its category of definable sets.If M is a module over a product of rings A and B, then M has a decomposition into a direct sum of an A-module and a B-module. Theorem 3.5.1 states that then the Grothendieck ring of M is the tensor product of the Grothendieck rings of the summands.Theorem 4.3.1 states that the Grothendieck ring of every infinite module over afield or skew field is isomorphic to Z[X].Proposition 5.2.4 states that for an elementary extension of models of anytheory, the elementary embedding induces an embedding of the corresponding Grothendieck rings. Theorem 5.3.1 is that for an elementary embedding of modules, we have the stronger result that the embedding induces an isomorphism of Grothendieck rings.We define a model-theoretic Grothendieck ring of the category Mod-R and explorethe relationship between this ring and the Grothendieck rings of general right R-modules. The category of pp-imaginaries, shown by K. Burke in [7] to be equivalentto the subcategory of finitely presented functors in (mod-R; Ab), provides a functorial approach to studying the generators of theGrothendieck rings of R-modules. It is shown in Theorem 6.3.5 that whenever R andS are Morita equivalent rings, the rings Grothendieck rings of the module categories Mod-R and Mod-S are isomorphic.Combining results from previous chapters, we derive Theorem 7.2.1 saying that theGrothendieck ring of any module over a semisimple ring is isomorphic to a polynomialring Z[X1,...,Xn] for some n.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Mathematical Sciences
Publication date:
Location:
Manchester, UK
Total pages:
152
Abstract:
We consider right modules over a ring, as models of a first order theory. We explorethe definable sets and the definable bijections between them. We employ the notionsof Euler characteristic and Grothendieck ring for a first order structure, introduced byJ. Krajicek and T. Scanlon in [24]. The Grothendieck ring is an algebraic structurethat captures certain properties of a model and its category of definable sets.If M is a module over a product of rings A and B, then M has a decomposition into a direct sum of an A-module and a B-module. Theorem 3.5.1 states that then the Grothendieck ring of M is the tensor product of the Grothendieck rings of the summands.Theorem 4.3.1 states that the Grothendieck ring of every infinite module over afield or skew field is isomorphic to Z[X].Proposition 5.2.4 states that for an elementary extension of models of anytheory, the elementary embedding induces an embedding of the corresponding Grothendieck rings. Theorem 5.3.1 is that for an elementary embedding of modules, we have the stronger result that the embedding induces an isomorphism of Grothendieck rings.We define a model-theoretic Grothendieck ring of the category Mod-R and explorethe relationship between this ring and the Grothendieck rings of general right R-modules. The category of pp-imaginaries, shown by K. Burke in [7] to be equivalentto the subcategory of finitely presented functors in (mod-R; Ab), provides a functorial approach to studying the generators of theGrothendieck rings of R-modules. It is shown in Theorem 6.3.5 that whenever R andS are Morita equivalent rings, the rings Grothendieck rings of the module categories Mod-R and Mod-S are isomorphic.Combining results from previous chapters, we derive Theorem 7.2.1 saying that theGrothendieck ring of any module over a semisimple ring is isomorphic to a polynomialring Z[X1,...,Xn] for some n.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:131409
Created by:
Perera, Simon
Created:
22nd September, 2011, 22:19:27
Last modified by:
Perera, Simon
Last modified:
2nd November, 2011, 15:22:34

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.