In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

New Synthetic Applications of Galactose Oxidase and Candida Antarctica Lipase B

Yuan, Bo

[Thesis]. Manchester, UK: The University of Manchester; 2011.

Access to files

Abstract

Increasing demand for chiral technology in industry has led to the rapid development of catalysts for enantioselective processes. In this respect biocatalysts are of particular interest due to their excellent regio- and stereo- selectivity and their ability to work under mild conditions.The development of catalysts for the selective oxidation of alcohols to aldehydes and ketones represents a major challenge in organic synthesis. Previous work showed that a variant of the enzyme galactose oxidase (GOase) was capable of oxidising a wide range of chiral secondary alcohols with high enantioselectivity.1 The aim of this work is to develop new applications for this variant.Two new stereoselective processes have been developed employing this variant:1. Enzymatic desymmetrisation of proatropisomeric diaryl ethers and biaryls. Atropisomers are stereoisomers resulting from restricted rotation about an axis, where the rotational barrier is high enough for isolation of the conformers. Desymmetrisation by GOase has allowed the production of atropisomers with enantiomeric excess (ee) up to 99% in good yields. An alternative approach based upon asymmetric reduction of the corresponding dialdehyde using ketoreductases (KREDs) has also been explored.2. Deracemisation of racemic secondary alcohols by a combination of enzyme and transition metal catalysts. Deracemisation is a method for the production of enantiopure compounds starting from racemic substrates. Combination of the enzyme GOase and a transition metal catalyst has allowed the production of a single enantiomer of a number of secondary alcohols from the corresponding racemic mixture (ee > 99%, yield > 98%).Primary amides are widely applied in the polymer industry. They are produced in large quantities each year. An efficient solvent-free process (yield > 90%) for the production of erucamide has been developed employing immobilised Candida antarctica Lipase B (CALB, Novozym® 435 ) under mild conditions (solid ammonia source, 90 °C).

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
163
Abstract:
Increasing demand for chiral technology in industry has led to the rapid development of catalysts for enantioselective processes. In this respect biocatalysts are of particular interest due to their excellent regio- and stereo- selectivity and their ability to work under mild conditions.The development of catalysts for the selective oxidation of alcohols to aldehydes and ketones represents a major challenge in organic synthesis. Previous work showed that a variant of the enzyme galactose oxidase (GOase) was capable of oxidising a wide range of chiral secondary alcohols with high enantioselectivity.1 The aim of this work is to develop new applications for this variant.Two new stereoselective processes have been developed employing this variant:1. Enzymatic desymmetrisation of proatropisomeric diaryl ethers and biaryls. Atropisomers are stereoisomers resulting from restricted rotation about an axis, where the rotational barrier is high enough for isolation of the conformers. Desymmetrisation by GOase has allowed the production of atropisomers with enantiomeric excess (ee) up to 99% in good yields. An alternative approach based upon asymmetric reduction of the corresponding dialdehyde using ketoreductases (KREDs) has also been explored.2. Deracemisation of racemic secondary alcohols by a combination of enzyme and transition metal catalysts. Deracemisation is a method for the production of enantiopure compounds starting from racemic substrates. Combination of the enzyme GOase and a transition metal catalyst has allowed the production of a single enantiomer of a number of secondary alcohols from the corresponding racemic mixture (ee > 99%, yield > 98%).Primary amides are widely applied in the polymer industry. They are produced in large quantities each year. An efficient solvent-free process (yield > 90%) for the production of erucamide has been developed employing immobilised Candida antarctica Lipase B (CALB, Novozym® 435 ) under mild conditions (solid ammonia source, 90 °C).
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:137772
Created by:
Yuan, Bo
Created:
28th November, 2011, 15:25:14
Last modified by:
Yuan, Bo
Last modified:
1st December, 2016, 13:21:17

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.