In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Graphene and Boron Nitride: Members of Two Dimensional Material Family

Riaz, Ibtsam

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

Name of University: University of ManchesterCandidate full name: Ibtsam RiazDegree Title: Doctor of Philosophy in the Faculty of Engineering and Physical sciencesThesis Title: Graphene and Boron Nitride: Members of Two Dimensional Material FamilyDate: 18-JAN-2012

Layman's Abstract

Graphene and monoatomic boron nitride as members of the new class of two dimensional materials are discussed in this thesis. Since the discovery of graphene in 2004, various aspects of this one atom thick material have been studied with previously unexpected results. Out of many outstanding amazing properties of graphene, its elastic properties are remarkable as graphene can bear strain up to 20% of its actual size without breaking. This is the record value amongst all known materials. In this work experiments were conducted to study the mechanical behaviour of graphene under compression and tension. For this purpose graphene monolayers were prepared on top of polymer (PMMA) substrates. They were then successfully subjected to uniaxial deformation (tension- compression) using a micromechanical technique known as cantilever beam analysis. The mechanical response of graphene was monitored by Raman spectroscopy. A nonlinear behaviour of the graphene G and 2D Raman bands was observed under uniaxial deformation of the graphene monolayers. Furthermore the buckling strength of graphene monolayers embedded in the Polymer was determined. The critical buckling strain as the moment of the final failure of the graphene was found to be dependent on the size and the geometry of the graphene monolayer flakes. Classical Euler analysis show that graphene monolayers embedded in the polymer provide higher values of the critical buckling strain as compared to the suspended graphene monolayers. From these studies we find that the lateral support provided by the polymer substrate enhances the buckling strain more than 6 orders of magnitude as compared to the suspended graphene. This property of bearing stress more than any other material can be utilized in different applications including graphene polymer nanocomposites and strain engineering on graphene based devices. The second part of the thesis focuses on a two dimensional insulator, single layer boron nitride. These novel two dimensional crystals have been successfully isolated and thoroughly characterized. Large area boron nitride layers were prepared by mechanical exfoliation from bulk boron nitride onto an oxidized silicon wafer. For their detection, it is described that how varying the thickness of SiO2 and using optical filters improves the low optical contrast of ultrathin boron nitride layers. Raman spectroscopy studies are presented showing how this technique allows to identify the number of boron nitride layers. The Raman frequency shift and intensity of the characteristic Raman peak of boron nitride layers of different thickness was analyzed for this purpose. Monolayer boron nitride shows an upward shift as compared to the other thicknesses up to bulk boron nitride. The Raman intensity decreases as the number of boron nitride layers decreases. Complementary studies have been carried out using atomic force microscopy. With the achieved results it is now possible to successfully employ ultrathin boron nitride crystals for precise fabrication of artificial heterostrutures such as graphene-boron nitride heterostrutures.

Keyword(s)

Boron Nitride; Graphene

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Physics
Publication date:
Location:
Manchester, UK
Total pages:
144
Abstract:
Name of University: University of ManchesterCandidate full name: Ibtsam RiazDegree Title: Doctor of Philosophy in the Faculty of Engineering and Physical sciencesThesis Title: Graphene and Boron Nitride: Members of Two Dimensional Material FamilyDate: 18-JAN-2012
Layman's abstract:
Graphene and monoatomic boron nitride as members of the new class of two dimensional materials are discussed in this thesis. Since the discovery of graphene in 2004, various aspects of this one atom thick material have been studied with previously unexpected results. Out of many outstanding amazing properties of graphene, its elastic properties are remarkable as graphene can bear strain up to 20% of its actual size without breaking. This is the record value amongst all known materials. In this work experiments were conducted to study the mechanical behaviour of graphene under compression and tension. For this purpose graphene monolayers were prepared on top of polymer (PMMA) substrates. They were then successfully subjected to uniaxial deformation (tension- compression) using a micromechanical technique known as cantilever beam analysis. The mechanical response of graphene was monitored by Raman spectroscopy. A nonlinear behaviour of the graphene G and 2D Raman bands was observed under uniaxial deformation of the graphene monolayers. Furthermore the buckling strength of graphene monolayers embedded in the Polymer was determined. The critical buckling strain as the moment of the final failure of the graphene was found to be dependent on the size and the geometry of the graphene monolayer flakes. Classical Euler analysis show that graphene monolayers embedded in the polymer provide higher values of the critical buckling strain as compared to the suspended graphene monolayers. From these studies we find that the lateral support provided by the polymer substrate enhances the buckling strain more than 6 orders of magnitude as compared to the suspended graphene. This property of bearing stress more than any other material can be utilized in different applications including graphene polymer nanocomposites and strain engineering on graphene based devices. The second part of the thesis focuses on a two dimensional insulator, single layer boron nitride. These novel two dimensional crystals have been successfully isolated and thoroughly characterized. Large area boron nitride layers were prepared by mechanical exfoliation from bulk boron nitride onto an oxidized silicon wafer. For their detection, it is described that how varying the thickness of SiO2 and using optical filters improves the low optical contrast of ultrathin boron nitride layers. Raman spectroscopy studies are presented showing how this technique allows to identify the number of boron nitride layers. The Raman frequency shift and intensity of the characteristic Raman peak of boron nitride layers of different thickness was analyzed for this purpose. Monolayer boron nitride shows an upward shift as compared to the other thicknesses up to bulk boron nitride. The Raman intensity decreases as the number of boron nitride layers decreases. Complementary studies have been carried out using atomic force microscopy. With the achieved results it is now possible to successfully employ ultrathin boron nitride crystals for precise fabrication of artificial heterostrutures such as graphene-boron nitride heterostrutures.
Keyword(s):
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:153124
Created by:
Riaz, Ibtsam
Created:
18th January, 2012, 13:36:43
Last modified by:
Riaz, Ibtsam
Last modified:
14th April, 2013, 18:20:26

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.