In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Robust Preconditioning for Second-Order Elliptic PDEs with Random Field Coefficients

Powell, Catherine E

Manchester: MIMS Manchester Institute of Mathematical Sciences; 2006.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

Fluid flow and the transport of chemicals in flows in heterogeneous porous media are modelled mathematically using partial differential equations (PDEs). In deterministic modelling, material properties of the porous medium are assumed to be known explicitly. This assumption leads to tractable computations. To tackle the more realistic stochastic groundwater flow problem, it is necessary to represent the unknown permeability coefficients as random fields with prescribed statistical properties. Traditionally, large numbers of deterministic problems are solved in a Monte Carlo framework and the solutions averaged to obtain statistical properties of the solution variables. Alternatively, the so-called stochastic finite element method (SFEM) discretises the probabilistic dimension of the PDE directly. However, this approach has not gained popularity with practitioners due to a perceived high computational cost. In this report we solve the stochastic Darcy flow problem via traditional and stochastic finite element techniques, in primal and mixed formulation where appropriate. Permeability coefficients are represented using Gaussian or lognormal random fields. We focus on fast and efficient linear algebra techniques for solving both the large numbers of deterministic problems required by the Monte Carlo approach and, in contrast, the single, structured, but extremely large linear system that arises as a consequence of the SFEM. To achieve optimal computational complexity, black-box algebraic multigrid is exploited in the design of fast solvers.

Bibliographic metadata

Type of resource:
Content type:
Author(s):
Report series title:
Publication date:
Place of publication:
Manchester
Report number:
2006.419
Total pages:
24
Abstract:
Fluid flow and the transport of chemicals in flows in heterogeneous porous media are modelled mathematically using partial differential equations (PDEs). In deterministic modelling, material properties of the porous medium are assumed to be known explicitly. This assumption leads to tractable computations. To tackle the more realistic stochastic groundwater flow problem, it is necessary to represent the unknown permeability coefficients as random fields with prescribed statistical properties. Traditionally, large numbers of deterministic problems are solved in a Monte Carlo framework and the solutions averaged to obtain statistical properties of the solution variables. Alternatively, the so-called stochastic finite element method (SFEM) discretises the probabilistic dimension of the PDE directly. However, this approach has not gained popularity with practitioners due to a perceived high computational cost. In this report we solve the stochastic Darcy flow problem via traditional and stochastic finite element techniques, in primal and mixed formulation where appropriate. Permeability coefficients are represented using Gaussian or lognormal random fields. We focus on fast and efficient linear algebra techniques for solving both the large numbers of deterministic problems required by the Monte Carlo approach and, in contrast, the single, structured, but extremely large linear system that arises as a consequence of the SFEM. To achieve optimal computational complexity, black-box algebraic multigrid is exploited in the design of fast solvers.

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:15414
Created by:
Powell, Catherine
Created:
24th September, 2009, 16:45:06
Last modified by:
Powell, Catherine
Last modified:
26th September, 2013, 16:08:57

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.