In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The Crystallisation of Conformationally Flexible Molecules

Back, Kevin Richard

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

Crystallising large, flexible molecules, which are becoming more common in pharmaceutical development, often presents significant challenges for chemists and particle scientists. These difficulties are sometimes attributed to the flexibility of the molecule, and the existence of multiple conformers in solution. Structurally related impurities, frequently present when crystallising these materials, can also impact on growth and habit, and both these aspects are considered in this thesis. This work considers two pharmaceutical compounds, a relatively small but nonetheless flexible molecule, ethenzamide, and a precursor of Amprenavir, a much larger molecule. Both compounds typically grow as thin needles in a wide variety of solvents, and effort was required to grow suitable crystals for structure determination. Ethenzamide has an unusual structure, the amide group being out-of-plane relative to the ring, while in all known co-crystals of the compound, including three new co-crystal structures determined in this work, it has a planar structure with an intramolecular hydrogen bond not seen in the single component crystal. Theoretical structure generation calculations suggest a second polymorph with a planar conformation may exist, though a screen has not found any further solid phases. ab initio work suggests the planar conformation is the stable arrangement in vacuo. Several structures for the Amprenavir intermediate have been determined, as an ethanol solvate, a methanol solvate and a hydrate. A phase diagram has been measured in the industrial solvent mix, and the nucleation and growth properties of this molecule, both pure and in the presence of several structurally related impurities, have been measured. The Cambridge Structural Database has been searched for similar structures, and conformational searches have been carried out for both molecules, using vacuum phase ab initio energy calculations. Infrared spectroscopy has been used to investigate solution phase structure. These theoretical and practical studies will try to relate conformational properties to crystallisation behaviour.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemical Engineering & Analytical Science (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
268
Abstract:
Crystallising large, flexible molecules, which are becoming more common in pharmaceutical development, often presents significant challenges for chemists and particle scientists. These difficulties are sometimes attributed to the flexibility of the molecule, and the existence of multiple conformers in solution. Structurally related impurities, frequently present when crystallising these materials, can also impact on growth and habit, and both these aspects are considered in this thesis. This work considers two pharmaceutical compounds, a relatively small but nonetheless flexible molecule, ethenzamide, and a precursor of Amprenavir, a much larger molecule. Both compounds typically grow as thin needles in a wide variety of solvents, and effort was required to grow suitable crystals for structure determination. Ethenzamide has an unusual structure, the amide group being out-of-plane relative to the ring, while in all known co-crystals of the compound, including three new co-crystal structures determined in this work, it has a planar structure with an intramolecular hydrogen bond not seen in the single component crystal. Theoretical structure generation calculations suggest a second polymorph with a planar conformation may exist, though a screen has not found any further solid phases. ab initio work suggests the planar conformation is the stable arrangement in vacuo. Several structures for the Amprenavir intermediate have been determined, as an ethanol solvate, a methanol solvate and a hydrate. A phase diagram has been measured in the industrial solvent mix, and the nucleation and growth properties of this molecule, both pure and in the presence of several structurally related impurities, have been measured. The Cambridge Structural Database has been searched for similar structures, and conformational searches have been carried out for both molecules, using vacuum phase ab initio energy calculations. Infrared spectroscopy has been used to investigate solution phase structure. These theoretical and practical studies will try to relate conformational properties to crystallisation behaviour.
Additional digital content not deposited electronically:
CD-ROM containing electronic appendices, including large datasets from conformational searches and crystal structure data.
Non-digital content not deposited electronically:
None
Thesis main supervisor(s):
Funder(s):
Language:
en

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:159063
Created by:
Back, Kevin
Created:
17th April, 2012, 11:37:40
Last modified by:
Back, Kevin
Last modified:
5th May, 2017, 12:09:56

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.