In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

A SOFTWARE COMPONENT MODEL THAT IS BOTH CONTROL-DRIVEN AND DATA-DRIVEN

Safie, Lily Suryani Binti

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

A software component model is the cornerstone of any Component-based Software Development (CBSD) methodology. Such a model defines the modelling elements for constructing software systems. In software system modelling, it is necessary to capture the three elements of a system’s behaviour: (i) control (ii) computation and (iii) data. Within a system, computations are performed according to the flow of control or the flow of data, depending on whether computations are control-driven or data-driven. Computations are function evaluations, assignments, etc., which transform data when invoked by control or data flow. Therefore a component model should be able to model control flow, data flow as well as computations. Current component models all model computations, but beside computations tend to model either control flow only or data flow only, but not both.In this thesis, we present a new component model which can model both control flow and data flow. It contains modelling elements that capture control flow and data flow explicitly. Furthermore, the modelling of control flow is separate from that of data flow; this enables the modelling of both control-driven and data-driven computations. The feasibility of the model is shown by means of an implementation of the model, in the form of a prototype tool. The usefulness of the model is then demonstrated for a specific domain, the embedded systems domain, as well as a generic domain. For the embedded systems domain, unlike current models, our model can be used to construct systems that are both control-driven and data-driven. In a generic domain, our model can be used to construct domain models, by constructing control flows and data flows which together define a domain model.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
236
Abstract:
A software component model is the cornerstone of any Component-based Software Development (CBSD) methodology. Such a model defines the modelling elements for constructing software systems. In software system modelling, it is necessary to capture the three elements of a system’s behaviour: (i) control (ii) computation and (iii) data. Within a system, computations are performed according to the flow of control or the flow of data, depending on whether computations are control-driven or data-driven. Computations are function evaluations, assignments, etc., which transform data when invoked by control or data flow. Therefore a component model should be able to model control flow, data flow as well as computations. Current component models all model computations, but beside computations tend to model either control flow only or data flow only, but not both.In this thesis, we present a new component model which can model both control flow and data flow. It contains modelling elements that capture control flow and data flow explicitly. Furthermore, the modelling of control flow is separate from that of data flow; this enables the modelling of both control-driven and data-driven computations. The feasibility of the model is shown by means of an implementation of the model, in the form of a prototype tool. The usefulness of the model is then demonstrated for a specific domain, the embedded systems domain, as well as a generic domain. For the embedded systems domain, unlike current models, our model can be used to construct systems that are both control-driven and data-driven. In a generic domain, our model can be used to construct domain models, by constructing control flows and data flows which together define a domain model.
Thesis main supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:160980
Created by:
Safie, Lily
Created:
17th May, 2012, 09:52:52
Last modified by:
Safie, Lily
Last modified:
19th June, 2012, 12:59:50

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.