In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

Full-text held externally

University researcher(s)

Academic department(s)

Imaging of intracellular calcium stores in individual permeabilized pancreatic acinar cells. Apparent homogeneous cellular distribution of inositol 1,4,5-trisphosphate-sensitive stores in permeabilized pancreatic acinar cells.

van de Put, F H; Elliott, A C

The Journal of biological chemistry. 1996;271(9):4999-5006.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Full-text is available externally using the following links:

Full-text held externally

Abstract

Several lines of evidence suggest that the existence of a heterogeneous population of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca2+ stores underlies the polarized agonist-induced rise in cytosolic Ca2+ concentration ([Ca2+]i) in pancreatic acinar cells (Kasai, H., Li, Y. X., and Miyashita, Y. (1993) Cell 74, 669-677; Thorn, P., Lawrie, A. M., Smith, P. M., Gallacher, D. V., and Petersen, O. H. (1993) Cell 74, 661-668). To investigate whether the apical pole of acinar cells contains Ca2+ stores which are relatively more sensitive to Ins(1,4,5)P3 than those in basolateral areas, we studied Ca2+ handling by Ca2+ stores in individual streptolysin O (SLO) permeabilized cells using the low affinity Ca2+ indicator Magfura-2 and an in situ imaging technique. The uptake of Ca2+ by intracellular Ca2+ stores was ATP-dependent. A steady-state level was reached within 10 min, and the free Ca2+ concentration inside loaded Ca2+ stores was estimated to be 70 microM. Ins(1,4,5)P3 induced Ca2+ release in a dose-dependent, "quantal" fashion. The kinetics of this release were similar to those reported for suspensions of permeabilized pancreatic acinar cells. Interestingly, the permeabilized acinar cells showed no intercellular variation in Ins(1,4,5)P3 sensitivity. Although SLO treatment is known to result in a considerable loss of cytosolic factors, permeabilization did not result in a redistribution of zymogen granules, as judged by electron microscope analysis. These results suggest that Ins(1,4,5)P3-sensitive Ca2+ stores are unlikely to be redistributed as a result of SLO treatment. The effects of Ins(1,4,5)P3 were therefore subsequently studied at the subcellular level. Detailed analysis demonstrated that no regional differences in Ins(1,4,5)P3 sensitivity exist in this permeabilized cell system. Therefore, we propose that additional cytosolic factors and/or the involvement of ryanodine receptors underlie the polarized pattern of agonist-induced Ca2+ signaling in intact pancreatic acinar cells.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Published date:
Abbreviated journal title:
ISSN:
Place of publication:
UNITED STATES
Volume:
271
Issue:
9
Pagination:
4999-5006
Pubmed Identifier:
8617776
Funder acknowledgement:
Access state:
Active

Institutional metadata

University researcher(s):
Academic department(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:164616
Created by:
Elliott, Austin
Created:
10th July, 2012, 12:38:24
Last modified by:
Elliott, Austin
Last modified:
10th July, 2012, 12:38:24

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.