In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Modelling and simulation of dynamic contrast-enhanced MRI of abdominal tumours

Banerji, Anita

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

Dynamic contrast-enhanced (DCE) time series analysis techniques are hard to fully validate quantitatively as ground truth microvascular parameters are difficult to obtain from patient data. This thesis presents a software application for generating synthetic image data from known ground truth tracer kinetic model parameters. As an object oriented design has been employed to maximise flexibility and extensibility, the application can be extended to include different vascular input functions, tracer kinetic models and imaging modalities. Data sets can be generated for different anatomical and motion descriptions as well as different ground truth parameters. The application has been used to generate a synthetic DCE-MRI time series of a liver tumour with non-linear motion of the abdominal organs due to breathing.The utility of the synthetic data has been demonstrated in several applications: in the development of an Akaike model selection technique for assessing the spatially varying characteristics of liver tumours; the robustness of model fitting and model selection to noise, partial volume effects and breathing motion in liver tumours; and the benefit of using model-driven registration to compensate for breathing motion.When applied to synthetic data with appropriate noise levels, the Akaike model selection technique can distinguish between the single-input extended Kety model for tumour and the dual-input Materne model for liver, and is robust to motion. A significant difference between median Akaike probability value in tumour and liver regions is also seen in 5/6 acquired data sets, with the extended Kety model selected for tumour. Knowledge of the ground truth distribution for the synthetic data was used to demonstrate that, whilst median Ktrans does not change significantly due to breathing motion, model-driven registration restored the structure of the Ktrans histogram and so could be beneficial to tumour heterogeneity assessments.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Medicine (Cancer and Enabling Sciences)
Publication date:
Location:
Manchester, UK
Total pages:
230
Abstract:
Dynamic contrast-enhanced (DCE) time series analysis techniques are hard to fully validate quantitatively as ground truth microvascular parameters are difficult to obtain from patient data. This thesis presents a software application for generating synthetic image data from known ground truth tracer kinetic model parameters. As an object oriented design has been employed to maximise flexibility and extensibility, the application can be extended to include different vascular input functions, tracer kinetic models and imaging modalities. Data sets can be generated for different anatomical and motion descriptions as well as different ground truth parameters. The application has been used to generate a synthetic DCE-MRI time series of a liver tumour with non-linear motion of the abdominal organs due to breathing.The utility of the synthetic data has been demonstrated in several applications: in the development of an Akaike model selection technique for assessing the spatially varying characteristics of liver tumours; the robustness of model fitting and model selection to noise, partial volume effects and breathing motion in liver tumours; and the benefit of using model-driven registration to compensate for breathing motion.When applied to synthetic data with appropriate noise levels, the Akaike model selection technique can distinguish between the single-input extended Kety model for tumour and the dual-input Materne model for liver, and is robust to motion. A significant difference between median Akaike probability value in tumour and liver regions is also seen in 5/6 acquired data sets, with the extended Kety model selected for tumour. Knowledge of the ground truth distribution for the synthetic data was used to demonstrate that, whilst median Ktrans does not change significantly due to breathing motion, model-driven registration restored the structure of the Ktrans histogram and so could be beneficial to tumour heterogeneity assessments.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:164828
Created by:
Banerji, Anita
Created:
13th July, 2012, 14:42:47
Last modified by:
Banerji, Anita
Last modified:
9th January, 2019, 09:50:13

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.