In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Search and Attention for Machine Vision

Brohan, Kevin Patrick

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

This thesis addresses the generation of behaviourally useful, robust representations of the sensory world in the context of machine vision and behaviour. The goals of the work presented in this thesis are to investigate strategies for representing the visual world in a way which is behaviourally useful, to investigate the use of a neurally inspired early perceptual organisation system upon high-level processing in an object recognition system and to investigate the use of a perceptual organisation system on driving an object-based selection process.To address these problems, a biologically inspired framework for machine attention has been developed at a high level of neural abstraction, which has been heavily inspired by the psychological and physiological literature. The framework is described in this thesis, and three system implementations, which investigate the above issues, are described and analysed in detail.The primate brain has access to a coherent representation of the external world, which appears as objects at different spatial locations. It is through these representations that appropriate behavioural responses may be generated. For example, we do not become confused by cluttered scenes or by occluded objects.The representation of the visual scene is generated in a hierarchical computing structure in the primate brain: while shape and position information are able to drive attentional selection rapidly, high-level processes such as object recognition must be performed serially, passing through an attentional bottleneck.Through the process of attentional selection, the primate visual system identifies behaviourally relevant regions of the visual scene, which allows it to prioritise serial attentional shifts towards certain locations. In primates, the process of attentional selection is complex, operating upon surface representations which are robust to occlusion.Attention itself suppresses neural activity related to distractor objects, while sustaining activity relating to the target, allowing the target object to have a clear neural representation upon which the recognition process can operate.This thesis concludes that dynamic representations that are both early and robust against occlusion have the potential to be highly useful in machine vision and behaviour applications

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
167
Abstract:
This thesis addresses the generation of behaviourally useful, robust representations of the sensory world in the context of machine vision and behaviour. The goals of the work presented in this thesis are to investigate strategies for representing the visual world in a way which is behaviourally useful, to investigate the use of a neurally inspired early perceptual organisation system upon high-level processing in an object recognition system and to investigate the use of a perceptual organisation system on driving an object-based selection process.To address these problems, a biologically inspired framework for machine attention has been developed at a high level of neural abstraction, which has been heavily inspired by the psychological and physiological literature. The framework is described in this thesis, and three system implementations, which investigate the above issues, are described and analysed in detail.The primate brain has access to a coherent representation of the external world, which appears as objects at different spatial locations. It is through these representations that appropriate behavioural responses may be generated. For example, we do not become confused by cluttered scenes or by occluded objects.The representation of the visual scene is generated in a hierarchical computing structure in the primate brain: while shape and position information are able to drive attentional selection rapidly, high-level processes such as object recognition must be performed serially, passing through an attentional bottleneck.Through the process of attentional selection, the primate visual system identifies behaviourally relevant regions of the visual scene, which allows it to prioritise serial attentional shifts towards certain locations. In primates, the process of attentional selection is complex, operating upon surface representations which are robust to occlusion.Attention itself suppresses neural activity related to distractor objects, while sustaining activity relating to the target, allowing the target object to have a clear neural representation upon which the recognition process can operate.This thesis concludes that dynamic representations that are both early and robust against occlusion have the potential to be highly useful in machine vision and behaviour applications
Thesis main supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:165336
Created by:
Brohan, Kevin
Created:
24th July, 2012, 11:16:46
Last modified by:
Brohan, Kevin
Last modified:
4th September, 2012, 19:35:03

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.