In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Monitoring of Power Quality Indices and Assessment of Signal Distortions in Wind Farms

Novanda, Happy

[Thesis]. Manchester, UK: The University of Manchester; 2012.

Access to files

Abstract

Power quality has become one of major concerns in the power industry. It can be described as the reliability of the electric power to maintain continuity operation of end-use equipment. Power quality problems are defined as deviation of voltage or current waveforms from the ideal value. The expansion plan of wind power generation has raised concern regarding how it influences the voltage and current signals. The variability nature of wind energy and the requirements of wind power generation increase the potential problems such as frequency and harmonic distortions. In order to analyze and mitigate problems in wind power generation, it is important to monitor power quality in wind farm. Therefore, the more accurate and reliable parameter estimation methods suitable for wind power generation are needed.Three parameter estimation methods are proposed in this thesis to estimate the unknown parameters, i.e. amplitude and phase angle of fundamental and harmonic components, DC component and system frequency, during the dynamic change in wind farm. In the first method, a self-tuning procedure is introduced to least square method to increase the immunity of the algorithm to noise. In the second method, nonrecursive Newton Type Algorithm is utilised to estimate the unknown parameters by obtaining the left pseudoinverse of Jacobian matrix. In the last technique, unscented transformation is used to replace the linearization procedure to obtain mean and covariance which will be used in Kalman filter method. All of the proposed methods have been tested rigorously using computer simulated data and have shown their capability to track the unknown parameters under extreme distortions. The performances of proposed methods have also been compared using real recorded data from several wind farms in Europe and have demonstrated high correlation. This comparison has verified that UKF requires the shortest processing time and STLS requires the longest.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
238
Abstract:
Power quality has become one of major concerns in the power industry. It can be described as the reliability of the electric power to maintain continuity operation of end-use equipment. Power quality problems are defined as deviation of voltage or current waveforms from the ideal value. The expansion plan of wind power generation has raised concern regarding how it influences the voltage and current signals. The variability nature of wind energy and the requirements of wind power generation increase the potential problems such as frequency and harmonic distortions. In order to analyze and mitigate problems in wind power generation, it is important to monitor power quality in wind farm. Therefore, the more accurate and reliable parameter estimation methods suitable for wind power generation are needed.Three parameter estimation methods are proposed in this thesis to estimate the unknown parameters, i.e. amplitude and phase angle of fundamental and harmonic components, DC component and system frequency, during the dynamic change in wind farm. In the first method, a self-tuning procedure is introduced to least square method to increase the immunity of the algorithm to noise. In the second method, nonrecursive Newton Type Algorithm is utilised to estimate the unknown parameters by obtaining the left pseudoinverse of Jacobian matrix. In the last technique, unscented transformation is used to replace the linearization procedure to obtain mean and covariance which will be used in Kalman filter method. All of the proposed methods have been tested rigorously using computer simulated data and have shown their capability to track the unknown parameters under extreme distortions. The performances of proposed methods have also been compared using real recorded data from several wind farms in Europe and have demonstrated high correlation. This comparison has verified that UKF requires the shortest processing time and STLS requires the longest.
Thesis main supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:172192
Created by:
Novanda, Happy
Created:
1st October, 2012, 17:30:15
Last modified by:
Novanda, Happy
Last modified:
20th October, 2014, 13:45:16

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.