In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    Neuroinflammation after acute brain injury: the role of interleukin-1 actions on non-neuronal cells

    Britton, Fiona

    [Thesis]. Manchester, UK: The University of Manchester; 2013.

    Access to files

    Abstract

    The neuroinflammatory response involves a complex network of interactions between multiple cell types and a number of inflammatory mediators. There is substantial evidence for a central role of interleukin-1 (IL-1) in the neuroinflammatory response to cerebral ischaemia. IL-1 exacerbates damage in animal models of ischaemia, and can also be neurotoxic in vitro. Matrix metalloproteinase-9 (MMP-9) is a key mediator of blood-brain barrier (BBB) disruption, and increased MMP-9 activity is associated with a worsened outcome in animal models of cerebral ischaemia. In vitro IL-1 induces astrocytic MMP-9 activity which is neurotoxic in neuronal-glial co-cultures. This study aimed to identify key mediators up-regulated in response to IL-1 in glial and endothelial cells and to study the role of the endothelial IL-1 receptor type 1 (IL-1R1) in cerebral ischaemia. Primary mixed glial cultures and neuronal-glial co-cultures were prepared from rats and mice, and primary endothelial cultures were prepared from mice. Cell cultures were treated with recombinant IL-1α or IL-1β, and the production of inflammatory mediators was assayed. The role of endothelial IL-1R1 in cerebral ischaemia was assessed using endothelial specific IL-1R1 knockdown (eIL-1R1 KD) mice. eIL-1R1 KD and wildtype (WT) mice were subjected to 60 min middle cerebral artery occlusion (MCAo) and 24 h reperfusion. Initial findings in this thesis show marked differences in IL-1-induced MMP-9 activity in mixed glial cultures prepared from rat and mouse, which account for the species dependent nature of IL-1-induced neurotoxicity observed. IL-1 induced a concentration-dependent increase in MMP-9 in rat glial cultures, although this effect was not present in mouse glial cultures. Tissue inhibitor of MMP (TIMP)-1 levels were elevated to a greater extent in mouse cultures providing evidence that increased TIMP-1 expression masks IL 1 induced MMP-9 activity, and protects mouse neuronal-glial co cultures from MMP-9 mediated neurotoxicity. Endothelial activation is a key step for leukocyte recruitment and infiltration and many mediators present after an ischaemic insult may induce endothelial activation. Up regulation of vascular cell adhesion molecule (VCAM)-1 was observed after 4 h treatment with IL-1α or IL-1β, followed by the up regulation of intracellular cell adhesion molecule (ICAM)-1 after 8 h treatment. Chemokines, monocyte chemoattractant protein (MCP)-1 and keratinocyte-derived chemokine (KC), were released after 8 h treatment followed by release of regulated on activation, normal T cell, expressed and secreted (RANTES) and granulocyte colony stimulating factor (G-CSF) at 24 h. These data suggest that IL 1 activation of the endothelium could be the primary stimulus for peripheral cell infiltration after cerebral ischaemia. To investigate this further MCAo was performed in eIL-1R1 KD and WT mice and lesion volumes and peripheral immune populations were studied. There was no difference in lesion volumes in eIL-1R1 KD mice compared to WT. Flow cytometric analysis of blood, bone marrow and spleen identified no genotype dependent changes in peripheral immune cell populations. In conclusion, IL-1 acts on multiple CNS cell types to induce cell specific responses. These studies provide evidence that IL-1-induced neurotoxicity is a species dependent mechanism, observed in rat cultures but not in mouse cultures. Furthermore, IL-1 activates endothelial cells and induced the up-regulation of adhesion molecules and controlled release of chemokines, facilitating the recruitment of peripheral immune populations. Data obtained from eIL-1R1 KD mice were unable to confirm a role of endothelial IL-1R1 in cerebral ischaemia. Thus, the interaction between multiple cell types and differential responses to IL 1 must be considered in unison. The IL-1 system remains an attractive therapeutic target for the treatment of cerebral ischaemia.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD Neuroscience
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    155
    Abstract:
    The neuroinflammatory response involves a complex network of interactions between multiple cell types and a number of inflammatory mediators. There is substantial evidence for a central role of interleukin-1 (IL-1) in the neuroinflammatory response to cerebral ischaemia. IL-1 exacerbates damage in animal models of ischaemia, and can also be neurotoxic in vitro. Matrix metalloproteinase-9 (MMP-9) is a key mediator of blood-brain barrier (BBB) disruption, and increased MMP-9 activity is associated with a worsened outcome in animal models of cerebral ischaemia. In vitro IL-1 induces astrocytic MMP-9 activity which is neurotoxic in neuronal-glial co-cultures. This study aimed to identify key mediators up-regulated in response to IL-1 in glial and endothelial cells and to study the role of the endothelial IL-1 receptor type 1 (IL-1R1) in cerebral ischaemia. Primary mixed glial cultures and neuronal-glial co-cultures were prepared from rats and mice, and primary endothelial cultures were prepared from mice. Cell cultures were treated with recombinant IL-1α or IL-1β, and the production of inflammatory mediators was assayed. The role of endothelial IL-1R1 in cerebral ischaemia was assessed using endothelial specific IL-1R1 knockdown (eIL-1R1 KD) mice. eIL-1R1 KD and wildtype (WT) mice were subjected to 60 min middle cerebral artery occlusion (MCAo) and 24 h reperfusion. Initial findings in this thesis show marked differences in IL-1-induced MMP-9 activity in mixed glial cultures prepared from rat and mouse, which account for the species dependent nature of IL-1-induced neurotoxicity observed. IL-1 induced a concentration-dependent increase in MMP-9 in rat glial cultures, although this effect was not present in mouse glial cultures. Tissue inhibitor of MMP (TIMP)-1 levels were elevated to a greater extent in mouse cultures providing evidence that increased TIMP-1 expression masks IL 1 induced MMP-9 activity, and protects mouse neuronal-glial co cultures from MMP-9 mediated neurotoxicity. Endothelial activation is a key step for leukocyte recruitment and infiltration and many mediators present after an ischaemic insult may induce endothelial activation. Up regulation of vascular cell adhesion molecule (VCAM)-1 was observed after 4 h treatment with IL-1α or IL-1β, followed by the up regulation of intracellular cell adhesion molecule (ICAM)-1 after 8 h treatment. Chemokines, monocyte chemoattractant protein (MCP)-1 and keratinocyte-derived chemokine (KC), were released after 8 h treatment followed by release of regulated on activation, normal T cell, expressed and secreted (RANTES) and granulocyte colony stimulating factor (G-CSF) at 24 h. These data suggest that IL 1 activation of the endothelium could be the primary stimulus for peripheral cell infiltration after cerebral ischaemia. To investigate this further MCAo was performed in eIL-1R1 KD and WT mice and lesion volumes and peripheral immune populations were studied. There was no difference in lesion volumes in eIL-1R1 KD mice compared to WT. Flow cytometric analysis of blood, bone marrow and spleen identified no genotype dependent changes in peripheral immune cell populations. In conclusion, IL-1 acts on multiple CNS cell types to induce cell specific responses. These studies provide evidence that IL-1-induced neurotoxicity is a species dependent mechanism, observed in rat cultures but not in mouse cultures. Furthermore, IL-1 activates endothelial cells and induced the up-regulation of adhesion molecules and controlled release of chemokines, facilitating the recruitment of peripheral immune populations. Data obtained from eIL-1R1 KD mice were unable to confirm a role of endothelial IL-1R1 in cerebral ischaemia. Thus, the interaction between multiple cell types and differential responses to IL 1 must be considered in unison. The IL-1 system remains an attractive therapeutic target for the treatment of cerebral ischaemia.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Thesis advisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:185844
    Created by:
    Britton, Fiona
    Created:
    22nd January, 2013, 23:59:52
    Last modified by:
    Britton, Fiona
    Last modified:
    9th January, 2019, 09:50:10

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.