In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    Characterisation of genes involved in early oogenesis in Drosophila melanogaster.

    Ford, Nicola

    [Thesis]. Manchester, UK: The University of Manchester; 2013.

    Access to files

    Abstract

    Tissue maintenance requires a balance between cell production and cell death. The former is dependent on the activity of stem cells, which in turn are dependent on both extrinsic signals produced by surrounding somatic tissue and intrinsic signals to control their behaviour. Additionally, stem cell activity may be regulated by systemic factors, demonstrating the complexity of stem cell regulation. The ovary of Drosophila melanogaster is a useful model for understanding tissue function as production of a viable egg requires the coordination of two different stem cell populations, the germline stem cells and follicle stem cells. In a screen designed to identify genes which regulate early oogenesis in the Drosophila ovary, we identified the four candidate genes which are described in the three papers found in this thesis. The first paper demonstrates that two RNA associated proteins, Ataxin 2 binding protein 1 and Gemin3, are essential for germline stem cell and follicle cell production in a Sex lethal dependent manner. The second shows that Glucuronyl transferase I, which is important for regulating the synthesis of key components of the extracellular matrix known as proteoglycans, is able to regulate the activity of several different signalling pathways. Finally, the third paper suggests that Defective proboscis extension response 9, a brain expressed gene involved in the behavioural response to alcohol, is important for regulating both follicle cells and germline stem cells at a systemic level. Taken together, these papers highlight the importance of intrinsic, extrinsic and systemic signalling in regulating stem cell function during Drosophila oogenesis.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD Stem Cell Research
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    249
    Abstract:
    Tissue maintenance requires a balance between cell production and cell death. The former is dependent on the activity of stem cells, which in turn are dependent on both extrinsic signals produced by surrounding somatic tissue and intrinsic signals to control their behaviour. Additionally, stem cell activity may be regulated by systemic factors, demonstrating the complexity of stem cell regulation. The ovary of Drosophila melanogaster is a useful model for understanding tissue function as production of a viable egg requires the coordination of two different stem cell populations, the germline stem cells and follicle stem cells. In a screen designed to identify genes which regulate early oogenesis in the Drosophila ovary, we identified the four candidate genes which are described in the three papers found in this thesis. The first paper demonstrates that two RNA associated proteins, Ataxin 2 binding protein 1 and Gemin3, are essential for germline stem cell and follicle cell production in a Sex lethal dependent manner. The second shows that Glucuronyl transferase I, which is important for regulating the synthesis of key components of the extracellular matrix known as proteoglycans, is able to regulate the activity of several different signalling pathways. Finally, the third paper suggests that Defective proboscis extension response 9, a brain expressed gene involved in the behavioural response to alcohol, is important for regulating both follicle cells and germline stem cells at a systemic level. Taken together, these papers highlight the importance of intrinsic, extrinsic and systemic signalling in regulating stem cell function during Drosophila oogenesis.
    Thesis main supervisor(s):
    Thesis advisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:189898
    Created by:
    Ford, Nicola
    Created:
    18th March, 2013, 14:45:54
    Last modified by:
    Ford, Nicola
    Last modified:
    3rd April, 2018, 11:51:08

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.