In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Impact of ICT Reliability and Situation Awareness on Power System Blackouts

Panteli, Mathaios

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

Recent major electrical disturbances highlight the extent to which modern societies depend on a reliable power infrastructure and the impact of these undesirable events on the economy and society. Numerous blackout models have been developed in the last decades that capture effectively the cascade mechanism leading to a partial or complete blackout. These models usually consider only the state of the electrical part of the system and investigate how failures or limitations in this system affect the probability and severity of a blackout.However, an analysis of the major disturbances that occurred during the last decade, such as the North America blackout of 2003 and the UCTE system disturbance of 2006, shows that failures or inadequacies in the Information and Communication Technology (ICT) infrastructure and also human errors had a significant impact on most of these blackouts.The aim of this thesis is to evaluate the contribution of these non-electrical events to the risk of power system blackouts. As the nature of these events is probabilistic and not deterministic, different probabilistic techniques have been developed to evaluate their impact on power systems reliability and operation.In particular, a method based on Monte Carlo simulation is proposed to assess the impact of an ICT failure on the operators’ situation awareness and consequently on their performance during an emergency. This thesis also describes a generic framework using Markov modeling for quantifying the impact of insufficient situation awareness on the probability of cascading electrical outages leading to a blackout. A procedure based on Markov modeling and fault tree analysis is also proposed for assessing the impact of ICT failures and human errors on the reliable operation of fast automatic protection actions, which are used to provide protection against fast-spreading electrical incidents. The impact of undesirable interactions and the uncoordinated operation of these protection schemes on power system reliability is also assessed in this thesis.The simulation results of these probabilistic methods show that a deterioration in the state of the ICT infrastructure and human errors affect significantly the probability and severity of power system blackouts. The conclusion of the work undertaken in this research is that failures in all the components of the power system, and not just the “heavy electrical” ones, must be considered when assessing the reliability of the electrical supply.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
270
Abstract:
Recent major electrical disturbances highlight the extent to which modern societies depend on a reliable power infrastructure and the impact of these undesirable events on the economy and society. Numerous blackout models have been developed in the last decades that capture effectively the cascade mechanism leading to a partial or complete blackout. These models usually consider only the state of the electrical part of the system and investigate how failures or limitations in this system affect the probability and severity of a blackout.However, an analysis of the major disturbances that occurred during the last decade, such as the North America blackout of 2003 and the UCTE system disturbance of 2006, shows that failures or inadequacies in the Information and Communication Technology (ICT) infrastructure and also human errors had a significant impact on most of these blackouts.The aim of this thesis is to evaluate the contribution of these non-electrical events to the risk of power system blackouts. As the nature of these events is probabilistic and not deterministic, different probabilistic techniques have been developed to evaluate their impact on power systems reliability and operation.In particular, a method based on Monte Carlo simulation is proposed to assess the impact of an ICT failure on the operators’ situation awareness and consequently on their performance during an emergency. This thesis also describes a generic framework using Markov modeling for quantifying the impact of insufficient situation awareness on the probability of cascading electrical outages leading to a blackout. A procedure based on Markov modeling and fault tree analysis is also proposed for assessing the impact of ICT failures and human errors on the reliable operation of fast automatic protection actions, which are used to provide protection against fast-spreading electrical incidents. The impact of undesirable interactions and the uncoordinated operation of these protection schemes on power system reliability is also assessed in this thesis.The simulation results of these probabilistic methods show that a deterioration in the state of the ICT infrastructure and human errors affect significantly the probability and severity of power system blackouts. The conclusion of the work undertaken in this research is that failures in all the components of the power system, and not just the “heavy electrical” ones, must be considered when assessing the reliability of the electrical supply.
Thesis main supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:191895
Created by:
Panteli, Mathaios
Created:
11th April, 2013, 09:37:40
Last modified by:
Panteli, Mathaios
Last modified:
1st September, 2015, 15:35:31

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.