In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Discriminative Pose Estimation Using Mixtures of Gaussian Processes

Fergie, Martin Paul

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

This thesis proposes novel algorithms for using Gaussian processes for Discriminative pose estimation. We overcome the traditional limitations of Gaussian processes, their cubic training complexity and their uni-modal predictive distribution by assembling them in a mixture of experts formulation. Our First contribution shows that by creating a large number of Fixed size Gaussian process experts, we can build a model that is able to scale to large data sets and accurately learn the multi-modal and non- linear mapping between image features and the subject’s pose. We demonstrate that this model gives state of the art performance compared to other discriminative pose estimation techniques.We then extend the model to automatically learn the size and location of each expert. Gaussian processes are able to accurately model non-linear functional regression problems where the output is given as a function of the input. However, when an individual Gaussian process is trained on data which contains multi-modalities, or varying levels of ambiguity, the Gaussian process is unable to accurately model the data. We propose a novel algorithm for learning the size and location of each expert in our mixture of Gaussian processes model to ensure that the training data of each expert matches the assumptions of a Gaussian process. We show that this model is able to out perform our previous mixture of Gaussian processes model.Our final contribution is a dynamics framework for inferring a smooth sequence of pose estimates from a sequence of independent predictive distributions. Discriminative pose estimation infers the pose of each frame independently, leading to jittery tracking results. Our novel algorithm uses a model of human dynamics to infer a smooth path through a sequence of Gaussian mixture models as given by our mixture of Gaussian processes model. We show that our algorithm is able to smooth and correct some mis- takes made by the appearance model alone, and outperform a baseline linear dynamical system.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
122
Abstract:
This thesis proposes novel algorithms for using Gaussian processes for Discriminative pose estimation. We overcome the traditional limitations of Gaussian processes, their cubic training complexity and their uni-modal predictive distribution by assembling them in a mixture of experts formulation. Our First contribution shows that by creating a large number of Fixed size Gaussian process experts, we can build a model that is able to scale to large data sets and accurately learn the multi-modal and non- linear mapping between image features and the subject’s pose. We demonstrate that this model gives state of the art performance compared to other discriminative pose estimation techniques.We then extend the model to automatically learn the size and location of each expert. Gaussian processes are able to accurately model non-linear functional regression problems where the output is given as a function of the input. However, when an individual Gaussian process is trained on data which contains multi-modalities, or varying levels of ambiguity, the Gaussian process is unable to accurately model the data. We propose a novel algorithm for learning the size and location of each expert in our mixture of Gaussian processes model to ensure that the training data of each expert matches the assumptions of a Gaussian process. We show that this model is able to out perform our previous mixture of Gaussian processes model.Our final contribution is a dynamics framework for inferring a smooth sequence of pose estimates from a sequence of independent predictive distributions. Discriminative pose estimation infers the pose of each frame independently, leading to jittery tracking results. Our novel algorithm uses a model of human dynamics to infer a smooth path through a sequence of Gaussian mixture models as given by our mixture of Gaussian processes model. We show that our algorithm is able to smooth and correct some mis- takes made by the appearance model alone, and outperform a baseline linear dynamical system.
Additional digital content not deposited electronically:
None
Non-digital content not deposited electronically:
None
Thesis main supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:195169
Created by:
Fergie, Martin
Created:
17th May, 2013, 10:16:52
Last modified by:
Fergie, Martin
Last modified:
3rd March, 2016, 20:11:28

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.