In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels.

Knot H, Standen N, Nelson MT

Journal of Physiology. 1998;508 ( Pt 1):211-21.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

1. The effects of inhibitors of ryanodine-sensitive calcium release (RyR) channels in the sarcoplasmic reticulum (SR) and Ca2+-dependent potassium (KCa) channels on the membrane potential, intracellular [Ca2+], and diameters of small pressurized (60 mmHg) cerebral arteries (100-200 micron) were studied using digital fluorescence video imaging of arterial diameter and wall [Ca2+], combined with microelectrode measurements of arterial membrane potential. 2. Ryanodine (10 microM), an inhibitor of RyR channels, depolarized by 9 mV, increased intracellular [Ca2+] by 46 nM and constricted pressurized (to 60 mmHg) arteries with myogenic tone by 44 micron (approximately 22 %). Iberiotoxin (100 nM), a blocker of KCa channels, under the same conditions, depolarized the arteries by 10 mV, increased arterial wall calcium by 51 nM, and constricted by 37 micron (approximately 19 %). The effects of ryanodine and iberiotoxin were not additive and were blocked by inhibitors of voltage-dependent Ca2+ channels. 3. Caffeine (10 mM), an activator of RyR channels, transiently increased arterial wall [Ca2+] by 136 +/- 9 nM in control arteries and by 158 +/- 12 nM in the presence of iberiotoxin. Caffeine was relatively ineffective in the presence of ryanodine, increasing [calcium] by 18 +/- 5 nM. 4. In the presence of blockers of voltage-dependent Ca2+ channels (nimodipine, diltiazem), ryanodine and inhibitors of the SR calcium ATPase (thapsigargin, cyclopiazonic acid) were without effect on arterial wall [Ca2+] and diameter. 5. These results suggest that local Ca2+ release originating from RyR channels (Ca2+ sparks) in the SR of arterial smooth muscle regulates myogenic tone in cerebral arteries solely through activation of KCa channels, which regulate membrane potential through tonic hyperpolarization, thus limiting Ca2+ entry through L-type voltage-dependent Ca2+ channels. KCa channels therefore act as a negative feedback control element regulating arterial diameter through a reduction in global intracellular free [Ca2+].

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Publication form:
Published date:
Journal title:
ISSN:
Place of publication:
ENGLAND
Volume:
508 ( Pt 1)
Start page:
211
End page:
21
Pagination:
211-21
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d16411
Created:
30th August, 2009, 13:56:52
Last modified:
3rd March, 2010, 17:07:34

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.