In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure.

Knot H, Nelson MT

Journal of Physiology. 1998;508 ( Pt 1):199-209.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

1. The regulation of intracellular [Ca2+] in the smooth muscle cells in the wall of small pressurized cerebral arteries (100-200 micron) of rat was studied using simultaneous digital fluorescence video imaging of arterial diameter and wall [Ca2+], combined with microelectrode measurements of arterial membrane potential. 2. Elevation of intravascular pressure (from 10 to 100 mmHg) caused a membrane depolarization from -63 +/- 1 to -36 +/- 2 mV, increased arterial wall [Ca2+] from 119 +/- 10 to 245 +/- 9 nM, and constricted the arteries from 208 +/- 10 micron (fully dilated, Ca2+ free) to 116 +/- 7 micron or by 45 % ('myogenic tone'). 3. Pressure-induced increases in arterial wall [Ca2+] and vasoconstriction were blocked by inhibitors of voltage-dependent Ca2+ channels (diltiazem and nisoldipine) or to the same extent by removal of external Ca2+. 4. At a steady pressure (i.e. under isobaric conditions at 60 mmHg), the membrane potential was stable at -45 +/- 1 mV, intracellular [Ca2+] was 190 +/- 10 nM, and arteries were constricted by 41 % (to 115 +/- 7 micron from 196 +/- 8 micron fully dilated). Under this condition of -45 +/- 5 mV at 60 mmHg, the voltage sensitivity of wall [Ca2+] and diameter were 7.5 nM mV-1 and 7.5 micron mV-1, respectively, resulting in a Ca2+ sensitivity of diameter of 1 mum nM-1. 5. Membrane potential depolarization from -58 to -23 mV caused pressurized arteries (to 60 mmHg) to constrict over their entire working range, i.e. from maximally dilated to constricted. This depolarization was associated with an elevation of arterial wall [Ca2+] from 124 +/- 7 to 347 +/- 12 nM. These increases in arterial wall [Ca2+] and vasoconstriction were blocked by L-type voltage-dependent Ca2+ channel inhibitors. 6. The relationship between arterial wall [Ca2+] and membrane potential was not significantly different under isobaric (60 mmHg) and non-isobaric conditions (10-100 mmHg), suggesting that intravascular pressure regulates arterial wall [Ca2+] through changes in membrane potential. 7. The results are consistent with the idea that intravascular pressure causes membrane potential depolarization, which opens voltage-dependent Ca2+ channels, acting as 'voltage sensors', thus increasing Ca2+ entry and arterial wall [Ca2+], which leads to vasoconstriction.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Publication form:
Author list:
Published date:
Journal title:
ISSN:
Place of publication:
ENGLAND
Volume:
508 ( Pt 1)
Start page:
199
End page:
209
Pagination:
199-209
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d16412
Created:
30th August, 2009, 13:56:53
Last modified:
3rd March, 2010, 17:07:38

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.