In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.

Zhang L, Bonev A, Nelson MT, Mawe G

American Journal of Physiology-Cell Physiology. 1993;265( 6 Pt 1):C1552-61.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

Smooth muscle cells in the intact guinea pig gallbladder had a resting membrane potential of about -45 mV and had spontaneous action potentials that consisted of a rapid depolarization, a transient repolarization, a plateau phase, and a complete repolarization. These action potentials lasted approximately 570 ms and occurred at a frequency of approximately 0.4 Hz. Action potentials were abolished by the dihydropyridine (DHP)-sensitive Ca2+ channel blocker nifedipine (1.0 microM) and were enhanced by the DHP-sensitive Ca2+ channel agonist BAY K 8644 (0.5 microM). The K+ channel blockers tetraethylammonium chloride (5.0 mM) and 4-aminopyridine (4-AP; 2.0 mM) prolonged the action potential, whereas charybdotoxin (100 nM), a blocker of calcium-activated potassium channels, had no effect. Whole cell currents were characterized in enzymatically isolated smooth muscle cells from the same preparation. 4-AP, a blocker of voltage-dependent K+ channels, suppressed 70% of the outward current at 0 mV. Charybdotoxin (100 nM) reduced an additional 15% of the current at 0 mV. Single calcium-activated potassium channels were identified. The potential for half-activation of these channels, at a cytosolic Ca2+ concentration of 100 nM, was 66.8 mV. A fivefold increase in cytosolic Ca2+ resulted in a shift of the activation curve by -53 mV. External tetraethylammonium chloride (200 microM) reduced the mean single channel current by 48% at 0 mV. The whole cell outward current was abolished by replacement of intracellular K+ for Cs+. Ca2+ currents were inhibited by nifedipine and were increased by BAY K 8644. We conclude that DHP-sensitive voltage-dependent Ca2+ channels are responsible for the depolarization of the action potentials and that the repolarization is due to primarily 4-AP-sensitive K+ current.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Publication form:
Published date:
ISSN:
Place of publication:
UNITED STATES
Volume:
265( 6 Pt 1)
Start page:
C1552
End page:
61
Pagination:
C1552-61
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d16445
Created:
30th August, 2009, 13:57:42
Last modified:
3rd March, 2010, 17:09:44

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.