In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Dynamic Inositol Trisphosphate-mediated Calcium Signals within Astrocytic Endfeet Underlie Vasodilation of Cerebral Arterioles

Straub SV, Bonev AD, Wilkerson MK, Nelson MT

Journal of General Physiology. 2006;128(6):659-669.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Full-text is available externally using the following links:

Full-text held externally

Abstract

Active neurons communicate to intracerebral arterioles in part through an elevation of cytosolic Ca(2+) concentration ([Ca(2+)](i)) in astrocytes, leading to the generation of vasoactive signals involved in neurovascular coupling. In particular, [Ca(2+)](i) increases in astrocytic processes ("endfeet"), which encase cerebral arterioles, have been shown to result in vasodilation of arterioles in vivo. However, the spatial and temporal properties of endfoot [Ca(2+)](i) signals have not been characterized, and information regarding the mechanism by which these signals arise is lacking. [Ca(2+)](i) signaling in astrocytic endfeet was measured with high spatiotemporal resolution in cortical brain slices, using a fluorescent Ca(2+) indicator and confocal microscopy. Increases in endfoot [Ca(2+)](i) preceded vasodilation of arterioles within cortical slices, as detected by simultaneous measurement of endfoot [Ca(2+)](i) and vascular diameter. Neuronal activity-evoked elevation of endfoot [Ca(2+)](i) was reduced by inhibition of inositol 1,4,5-trisphosphate (InsP(3)) receptor Ca(2+) release channels and almost completely abolished by inhibition of endoplasmic reticulum Ca(2+) uptake. To probe the Ca(2+) release mechanisms present within endfeet, spatially restricted flash photolysis of caged InsP(3) was utilized to liberate InsP(3) directly within endfeet. This maneuver generated large amplitude [Ca(2+)](i) increases within endfeet that were spatially restricted to this region of the astrocyte. These InsP(3)-induced [Ca(2+)](i) increases were sensitive to depletion of the intracellular Ca(2+) store, but not to ryanodine, suggesting that Ca(2+)-induced Ca(2+) release from ryanodine receptors does not contribute to the generation of endfoot [Ca(2+)](i) signals. Neuronally evoked increases in astrocytic [Ca(2+)](i) propagated through perivascular astrocytic processes and endfeet as multiple, distinct [Ca(2+)](i) waves and exhibited a high degree of spatial heterogeneity. Regenerative Ca(2+) release processes within the endfeet were evident, as were localized regions of Ca(2+) release, and treatment of slices with the vasoactive neuropeptides somatostatin and vasoactive intestinal peptide was capable of inducing endfoot [Ca(2+)](i) increases, suggesting the potential for signaling between local interneurons and astrocytic endfeet in the cortex. Furthermore, photorelease of InsP(3) within individual endfeet resulted in a local vasodilation of adjacent arterioles, supporting the concept that astrocytic endfeet function as local "vasoregulatory units" by translating information from active neurons into complex InsP(3)-mediated Ca(2+) release signals that modulate arteriolar diameter.

Bibliographic metadata

Type of resource:
Content type:
Publication status:
Accepted
Publication form:
Published date:
ISSN:
Volume:
128(6)
Start page:
659
End page:
669
Pagination:
659-669
Digital Object Identifier:
10.1085/jgp.200609650
Attached files embargo period:
Immediate release
Attached files release date:
30th September, 2014
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d27552
Created:
2nd September, 2009, 09:39:19
Last modified by:
Nelson, Mark
Last modified:
30th September, 2014, 14:40:52

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.