In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation.

Barnes K, McIntosh E, Whetton A, Daley G, Bentley J, Baldwin S

Oncogene. 2005;24( 20):3257-67.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Use our list of Related resources to find this item elsewhere. Alternatively, request a copy from the Library's Document supply service.

Abstract

In chronic myeloid leukaemia (CML) expression of the chimeric tyrosine kinase, Bcr-Abl, promotes the inappropriate survival of haemopoietic stem cells by a nonautocrine mechanism in the absence of IL-3. Stimulation of glucose uptake appears to play an important role in the suppression of apoptosis by this cytokine in normal haemopoietic cells. To investigate whether the cell survival mechanisms mediated by the oncoprotein and cytokine showed any similarities, we employed a haemopoietic cell line, TonB210, engineered for inducible expression of Bcr-Abl. Tyrosine kinase expression in cytokine-deprived cells was found to mimic the effect of IL-3 in maintaining a higher V(max) for hexose uptake. In both IL-3- treated cells and those expressing Bcr-Abl, high rates of hexose uptake were associated with the retention at the cell surface of approximately 80% of the total cellular content of the GLUT1 glucose transporter. In contrast, treatment of Bcr-Abl-expressing cells for 6 h with the Bcr-Abl kinase inhibitor Glivec (10 muM), in the absence of IL-3, led to internalization of approximately 90% of the cell-surface transporters and drastically decreased (4.4+/-0.9 (mean+/-s.e.m., 4)-fold) the V(max) for hexose uptake, without significant effect on the K(m) for this process or on the total cellular transporter content. These effects were not the result of any significant loss in cell viability, and preceded the onset of apoptosis caused by inhibition of Bcr-Abl. Both IL-3 treatment and expression of Bcr-Abl led to enhanced phosphorylation of Akt (protein kinase B). The stimulation of transport by IL-3 and Bcr-Abl in TonB210 cells was inhibitable by phosphatidylinositol 3-kinase inhibitors, indicating the involvement of this kinase in the signal transduction pathway. These findings suggest that inhibition of glucose transport plays an important role in the therapeutic action of Glivec, and that the signal transduction pathways involved in transport stimulation by Bcr-Abl may offer novel therapeutic targets for CML.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Published date:
Journal title:
ISSN:
Place of publication:
England
Volume:
24( 20)
Start page:
3257
End page:
67
Pagination:
3257-67
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:1d28909
Created:
2nd September, 2009, 11:40:23
Last modified:
1st February, 2015, 19:03:53

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.