In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels.

Dabertrand, Fabrice; Nelson, Mark T; Brayden, Joseph E

Circulation research. 2012;110(2):285-94.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Full-text is available externally using the following links:

Full-text held externally

Abstract

RATIONALE: Acidosis is a powerful vasodilator signal in the brain circulation. However, the mechanisms by which this response occurs are not well understood, particularly in the cerebral microcirculation. One important mechanism to dilate cerebral (pial) arteries is by activation of large-conductance, calcium-sensitive potassium (BK(Ca)) channels by local Ca(2+) signals (Ca(2+) sparks) through ryanodine receptors (RyRs). However, the role of this pathway in the brain microcirculation is not known. OBJECTIVE: The objectives of this study were to determine the mechanism by which acidosis dilates brain parenchymal arterioles (PAs) and to elucidate the roles of RyRs and BK(Ca) channels in this response. METHODS AND RESULTS: Internal diameter and vascular smooth muscle cell Ca(2+) signals were measured in isolated pressurized murine PAs, using imaging techniques. In physiological pH (7.4), vascular smooth muscle cells exhibited primarily RyR-dependent Ca(2+) waves. Reducing external pH from 7.4 to 7.0 in both normocapnic and hypercapnic conditions decreased Ca(2+) wave activity, and dramatically increased Ca(2+) spark activity. Acidic pH caused a dilation of PAs which was inhibited by about 60% by BK(Ca) channel or RyR blockers, in a nonadditive manner. Similarly, dilator responses to acidosis were reduced by nearly 60% in arterioles from BK(Ca) channel knockout mice. Dilations induced by acidic pH were unaltered by inhibitors of K(ATP) channels or nitric oxide synthase. CONCLUSIONS: These results support the novel concept that acidification, by converting Ca(2+) waves to sparks, leads to the activation of BK(Ca) channels to induce dilation of cerebral PAs.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Published date:
Journal title:
Abbreviated journal title:
ISSN:
Place of publication:
United States
Volume:
110
Issue:
2
Pagination:
285-94
Digital Object Identifier:
10.1161/CIRCRESAHA.111.258145
Pubmed Identifier:
22095728
Pii Identifier:
CIRCRESAHA.111.258145
Access state:
Active

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:201853
Created by:
Nelson, Mark
Created:
19th July, 2013, 13:40:06
Last modified by:
Nelson, Mark
Last modified:
19th July, 2013, 13:40:06

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.