In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Ground Reaction Forces and Plantar Pressure Distribution Generated by Two Tai Chi Movements

Wong, Shiu Hong Trevor

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

Tai Chi Chuan, Tai Chi (TC) in short, is a popular form of Chinese martial arts which have been practised by millions of people and provides various health benefits, such as improving balance control, strengthening leg muscles, reducing fear of falling, enhancing flexibility and many more. The American Geriatrics Society and the British Geriatrics Society have recommended TC as a suitable exercise for preventing falls of older people. However, it is not clear which TC components are the most effective for balance improvement. In addition, it is also unknown what differences in biomechanics aspects are between non-TC participants and experienced TC practitioners. This thesis aims to provide new knowledge and understanding of the kinetics and kinematics characteristics of two most frequently presented TC foot movements: push-hand and Tai Chi gait (TCG), through a comparative experimental study on the ground reaction forces (GRFs) and plantar pressure distribution on both feet induced by TC and non-TC participants. Three hypotheses were proposed for facilitating this research.The characteristics of foot/leg movements in each of the simplified 24-form TC are investigated and each form is classified into one of four types. Two most frequently presented foot movements, push-hand and TCG foot movements, were identified, which are embedded in 18 of the 24 forms. This forms a basis for further biomechanics study. Ten male TC and ten male non-TC participants attended the experiments while performing push-hand, with and without an opponent, and TCG. The GRFs in the three perpendicular directions and plantar pressure distribution were measured simultaneously through using two force platforms and an insole system. A video recording system was also used to capture the movements of selected points on the subjects. The kinematics data were used to identify the critical positions that divide the leg stance phases of TCG.The characteristics of the foot forces during the two fundamental foot movements were examined and revealed. The differences and similarities on the GRFs and plantar pressure distribution generated by the two groups of participants were assessed and identified. The similarities show that the non-TC participants are able to achieve similar characteristics of foot forces as the TC participants do. The differences show that the TC participants have better control of their body movement, generating larger GRFs during push-hand and smaller GRFs during TCG in the two horizontal directions. These reflect the TC participants’ ability developed by practising TC for several years which cannot be achieved by the non-TC participants during the tests. It is also demonstrated that push-hand generates the lowest vertical foot forces among those generated by other possible human movements, such as TCG and walking.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Mechanical Engineering
Publication date:
Location:
Manchester, UK
Total pages:
225
Abstract:
Tai Chi Chuan, Tai Chi (TC) in short, is a popular form of Chinese martial arts which have been practised by millions of people and provides various health benefits, such as improving balance control, strengthening leg muscles, reducing fear of falling, enhancing flexibility and many more. The American Geriatrics Society and the British Geriatrics Society have recommended TC as a suitable exercise for preventing falls of older people. However, it is not clear which TC components are the most effective for balance improvement. In addition, it is also unknown what differences in biomechanics aspects are between non-TC participants and experienced TC practitioners. This thesis aims to provide new knowledge and understanding of the kinetics and kinematics characteristics of two most frequently presented TC foot movements: push-hand and Tai Chi gait (TCG), through a comparative experimental study on the ground reaction forces (GRFs) and plantar pressure distribution on both feet induced by TC and non-TC participants. Three hypotheses were proposed for facilitating this research.The characteristics of foot/leg movements in each of the simplified 24-form TC are investigated and each form is classified into one of four types. Two most frequently presented foot movements, push-hand and TCG foot movements, were identified, which are embedded in 18 of the 24 forms. This forms a basis for further biomechanics study. Ten male TC and ten male non-TC participants attended the experiments while performing push-hand, with and without an opponent, and TCG. The GRFs in the three perpendicular directions and plantar pressure distribution were measured simultaneously through using two force platforms and an insole system. A video recording system was also used to capture the movements of selected points on the subjects. The kinematics data were used to identify the critical positions that divide the leg stance phases of TCG.The characteristics of the foot forces during the two fundamental foot movements were examined and revealed. The differences and similarities on the GRFs and plantar pressure distribution generated by the two groups of participants were assessed and identified. The similarities show that the non-TC participants are able to achieve similar characteristics of foot forces as the TC participants do. The differences show that the TC participants have better control of their body movement, generating larger GRFs during push-hand and smaller GRFs during TCG in the two horizontal directions. These reflect the TC participants’ ability developed by practising TC for several years which cannot be achieved by the non-TC participants during the tests. It is also demonstrated that push-hand generates the lowest vertical foot forces among those generated by other possible human movements, such as TCG and walking.
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:211660
Created by:
Wong, Shiu Hong
Created:
24th October, 2013, 22:44:53
Last modified by:
Wong, Shiu Hong
Last modified:
14th November, 2013, 14:47:54

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.