In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Investigating leak rates for "Leak-before-Break" assessments

Gill, Peter James

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

An investigation into the thermo-mechanical closure effect when a fluid leaks through a crack is presented here. The extended finite element method is the modelling scheme adopted for this, and the application of heat flux and pressure jump conditions along the crack is one of the novel contributions of this work. By modelling the fluid as one dimensional steady state and obtaining a heat transfer coefficient, it has been shown here that coupling the fluid with the structure is possible all within a single element. Convergence studies done with analytical models as a benchmark demonstrate the accuracy of the new method. Simulations are performed with the new element for conditions seen in both gas cooled and water cooled reactors. Significant crack closure is observed when the bulk fluid temperature is 20oC hotter than the structure. It was also found that the amount of closure due to crack wall heating varies depending on the external boundary conditions, this is quantified in the thesis.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Engineering Doctorate
Degree programme:
EngD Nuclear Engineering
Publication date:
Location:
Manchester, UK
Total pages:
156
Abstract:
An investigation into the thermo-mechanical closure effect when a fluid leaks through a crack is presented here. The extended finite element method is the modelling scheme adopted for this, and the application of heat flux and pressure jump conditions along the crack is one of the novel contributions of this work. By modelling the fluid as one dimensional steady state and obtaining a heat transfer coefficient, it has been shown here that coupling the fluid with the structure is possible all within a single element. Convergence studies done with analytical models as a benchmark demonstrate the accuracy of the new method. Simulations are performed with the new element for conditions seen in both gas cooled and water cooled reactors. Significant crack closure is observed when the bulk fluid temperature is 20oC hotter than the structure. It was also found that the amount of closure due to crack wall heating varies depending on the external boundary conditions, this is quantified in the thesis.
Thesis main supervisor(s):
Thesis advisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:212249
Created by:
Gill, Peter
Created:
2nd November, 2013, 15:18:21
Last modified by:
Gill, Peter
Last modified:
14th November, 2013, 14:50:14

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.