In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Super-resolution Optical Imaging Using Microsphere Nanoscopy

Lee, Seoungjun

[Thesis]. Manchester, UK: The University of Manchester; 2013.

Access to files

Abstract

Standard optical microscopes cannot resolve images below 200 nm within the visible wavelengths due to optical diffraction limit. This Thesis reports an investigation into super-resolution imaging beyond the optical diffraction limit by microsphere optical nano-scopy (MONS) and submerged microsphere optical nano-scopy (SMON). The effect of microsphere size, material and the liquid type as well as light illumination conditions and focal plane positions on imaging resolution and magnification have been studied for imaging both biological (viruses and cells) and non-biological (Blu-ray disk patterns and nano-pores of anodised aluminium oxide) samples. In particular, sub-surface imaging of nano-structures (data-recorded Blu-ray) that cannot even be seen by a scanning electron microscope (SEM) has been demonstrated using the SMON technique. Adenoviruses of 75 nm in size have been observed with white light optical microscopy for the first time. High refractive index microsphere materials such as BaTiO3 (refractive index n = 1.9) and TiO2-BaO-ZnO (refractive index n = 2.2) were investigated for the first time for the imaging. The super-resolution imaging of sub-diffraction-limited objects is strongly influenced by the relationship between the far-field propagating wave and the near-field evanescent waves. The diffraction limit free evanescent waves are the key to achieving super-resolution imaging. This work shows that the MONS and SMON techniques can generate super-resolution through converting evanescent waves into propagating wave. The optical interactions with the microspheres were simulated using special software (DSIMie) and finite different in time domain numerical analysis software (CST Microwave Studio). The optical field structures are observed in the near-field of a microsphere. The photonic nanojets waist and the distance between single dielectric microsphere and maximum intensity position were calculated. The theoretical modelling was calculated for comparisons with experimental measurements in order to develop and discover super-resolution potential.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Mechanical Engineering
Publication date:
Location:
Manchester, UK
Total pages:
186
Abstract:
Standard optical microscopes cannot resolve images below 200 nm within the visible wavelengths due to optical diffraction limit. This Thesis reports an investigation into super-resolution imaging beyond the optical diffraction limit by microsphere optical nano-scopy (MONS) and submerged microsphere optical nano-scopy (SMON). The effect of microsphere size, material and the liquid type as well as light illumination conditions and focal plane positions on imaging resolution and magnification have been studied for imaging both biological (viruses and cells) and non-biological (Blu-ray disk patterns and nano-pores of anodised aluminium oxide) samples. In particular, sub-surface imaging of nano-structures (data-recorded Blu-ray) that cannot even be seen by a scanning electron microscope (SEM) has been demonstrated using the SMON technique. Adenoviruses of 75 nm in size have been observed with white light optical microscopy for the first time. High refractive index microsphere materials such as BaTiO3 (refractive index n = 1.9) and TiO2-BaO-ZnO (refractive index n = 2.2) were investigated for the first time for the imaging. The super-resolution imaging of sub-diffraction-limited objects is strongly influenced by the relationship between the far-field propagating wave and the near-field evanescent waves. The diffraction limit free evanescent waves are the key to achieving super-resolution imaging. This work shows that the MONS and SMON techniques can generate super-resolution through converting evanescent waves into propagating wave. The optical interactions with the microspheres were simulated using special software (DSIMie) and finite different in time domain numerical analysis software (CST Microwave Studio). The optical field structures are observed in the near-field of a microsphere. The photonic nanojets waist and the distance between single dielectric microsphere and maximum intensity position were calculated. The theoretical modelling was calculated for comparisons with experimental measurements in order to develop and discover super-resolution potential.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:214622
Created by:
Lee, Seoungjun
Created:
10th December, 2013, 13:14:56
Last modified by:
Lee, Seoungjun
Last modified:
22nd January, 2014, 16:13:49

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.