In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    The Role of Protein Kinase C Alpha in the Skin and Cutaneous Wound Healing

    Cooper, Nichola

    [Thesis]. Manchester, UK: The University of Manchester; 2014.

    Access to files

    Abstract

    Chronic wounds represent a severe socio-economic burden and a key area of unmet clinical need. PKCα is ubiquitous in the skin, particularly the epidermis and functions in numerous pathways that are fundamental to wound repair. By utilising a global PKCα-/- mouse we have identified PKCα-regulated processes both in unwounded skin and during wound healing. PKCα-/- mice display considerably delayed wound healing with a dramatic reduction in re-epithelialisation. By analysing the ultrastructure of the epidermis, I have shown that this delay directly correlates with a failure of wound edge desmosomes to switch to a their adhesive properties. A major risk factor for the development of chronic wounds is age. Crucially, this delay in modulating cell adhesion is conserved in human chronic wounds and aged murine skin. Furthermore, manipulation of PKCα using an inducible bitransgenic mouse containing epidermal specific constitutively active PKCα can accelerate the modulation of desmosome adhesion and subsequently improve re-epithelialisation. Global gene expression analysis of PKCα-/- skin and wounds revealed further defects. Upon wounding, we observed a failure to correctly regulate expression of key collagen and Wnt signalling genes that are essential for correct and timely wound healing. Finally, intrinsic gene expression changes were identified in the skin of PKCα-/- mice, specifically a downregulation of multiple extracellular matrix genes. Of note was the downregulation of small leucine-rich proteoglycans which led to alterations to dermal collagen structure and skin tensile strength. These changes render the PKCα-/- skin susceptible to breaking and wound development. To conclude, we have identified multiple roles for PKCα intrinsically in the skin and also during cutaneous wound healing. Importantly, these intrinsic changes appear to predispose PKCα-/- skin to the development of cutaneous wounds and altered wound-specific processes that manifest in a delayed healing phenotype.

    Additional content not available electronically

    One CD compact containing data relevant for Chapters 4 and 5 will be included in the rear of each printed thesis copy.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree programme:
    PhD Cell Biology
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    177
    Abstract:
    Chronic wounds represent a severe socio-economic burden and a key area of unmet clinical need. PKCα is ubiquitous in the skin, particularly the epidermis and functions in numerous pathways that are fundamental to wound repair. By utilising a global PKCα-/- mouse we have identified PKCα-regulated processes both in unwounded skin and during wound healing. PKCα-/- mice display considerably delayed wound healing with a dramatic reduction in re-epithelialisation. By analysing the ultrastructure of the epidermis, I have shown that this delay directly correlates with a failure of wound edge desmosomes to switch to a their adhesive properties. A major risk factor for the development of chronic wounds is age. Crucially, this delay in modulating cell adhesion is conserved in human chronic wounds and aged murine skin. Furthermore, manipulation of PKCα using an inducible bitransgenic mouse containing epidermal specific constitutively active PKCα can accelerate the modulation of desmosome adhesion and subsequently improve re-epithelialisation. Global gene expression analysis of PKCα-/- skin and wounds revealed further defects. Upon wounding, we observed a failure to correctly regulate expression of key collagen and Wnt signalling genes that are essential for correct and timely wound healing. Finally, intrinsic gene expression changes were identified in the skin of PKCα-/- mice, specifically a downregulation of multiple extracellular matrix genes. Of note was the downregulation of small leucine-rich proteoglycans which led to alterations to dermal collagen structure and skin tensile strength. These changes render the PKCα-/- skin susceptible to breaking and wound development. To conclude, we have identified multiple roles for PKCα intrinsically in the skin and also during cutaneous wound healing. Importantly, these intrinsic changes appear to predispose PKCα-/- skin to the development of cutaneous wounds and altered wound-specific processes that manifest in a delayed healing phenotype.
    Additional digital content not deposited electronically:
    One CD compact containing data relevant for Chapters 4 and 5 will be included in the rear of each printed thesis copy.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Thesis advisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:217662
    Created by:
    Cooper, Nichola
    Created:
    19th January, 2014, 12:35:17
    Last modified by:
    Cooper, Nichola
    Last modified:
    30th April, 2014, 13:47:56

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.