In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

New approaches to the control of contamination in biofuel ethanol fermentations

Spencer, Christopher Andrew

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

The production of biofuels and in particular bioethanol has increased rapidly since the early 1990’s. The advantages of biofuels include reduced CO2 production, a decrease in fuel importation for many nations (notably the US and Brazil), and comparatively simple blending with fossil fuels.The production of basic fuel ethanol (1st generation) involves the use of an energy crop feedstock (corn in US and sugar cane in Brazil). The feedstock is processed via simple mechanical methods to release the simple carbohydrates, mixed with water and fermented anaerobically via S. cerevisiae yeast into ethanol and CO2. Due to the low market value of fuel ethanol, profit margins are restrictive, and as a result sterilisation and aseptic techniques are not economically viable, and contamination by environmental organisms is commonplace.The current system of biocontrol involves the addition of antibiotics, primarily penicillin and virginiamycin, to the fermentation. While these antibiotics are broad spectrum and highly effective in reducing the impact of contamination, the negative environmental impacts of antibiotic usage are well known. In order to reduce the impact of contamination and reduce reliance on antibiotics an alternative system of biocontrol is required.In this thesis various biocontrol agents are assessed, including bacteriophage, hop acids, chitosan, onion oil extract, copper and silver ions. The effect of these agents on the growth of various contaminant bacteria and a strain of S. cerevisiae is assessed and fermentations are carried out under sterile and controlled contaminated conditions to generate data on the effect of the contaminant and the various methods of biocontrol.Other possibilities investigated include the insertion of plasmids containing heat shock proteins into S. cerevisiae to enhance thermo-tolerance.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry
Publication date:
Location:
Manchester, UK
Total pages:
167
Abstract:
The production of biofuels and in particular bioethanol has increased rapidly since the early 1990’s. The advantages of biofuels include reduced CO2 production, a decrease in fuel importation for many nations (notably the US and Brazil), and comparatively simple blending with fossil fuels.The production of basic fuel ethanol (1st generation) involves the use of an energy crop feedstock (corn in US and sugar cane in Brazil). The feedstock is processed via simple mechanical methods to release the simple carbohydrates, mixed with water and fermented anaerobically via S. cerevisiae yeast into ethanol and CO2. Due to the low market value of fuel ethanol, profit margins are restrictive, and as a result sterilisation and aseptic techniques are not economically viable, and contamination by environmental organisms is commonplace.The current system of biocontrol involves the addition of antibiotics, primarily penicillin and virginiamycin, to the fermentation. While these antibiotics are broad spectrum and highly effective in reducing the impact of contamination, the negative environmental impacts of antibiotic usage are well known. In order to reduce the impact of contamination and reduce reliance on antibiotics an alternative system of biocontrol is required.In this thesis various biocontrol agents are assessed, including bacteriophage, hop acids, chitosan, onion oil extract, copper and silver ions. The effect of these agents on the growth of various contaminant bacteria and a strain of S. cerevisiae is assessed and fermentations are carried out under sterile and controlled contaminated conditions to generate data on the effect of the contaminant and the various methods of biocontrol.Other possibilities investigated include the insertion of plasmids containing heat shock proteins into S. cerevisiae to enhance thermo-tolerance.
Thesis main supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:219983
Created by:
Spencer, Christopher
Created:
22nd February, 2014, 14:57:53
Last modified by:
Spencer, Christopher
Last modified:
30th April, 2014, 14:32:11

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.