In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Impact Analysis in Description Logic Ontologies

Goncalves, Joao Rafael Landeiro De sousa

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

With the growing popularity of the Web Ontology Language (OWL) as a logic-based ontology language, as well as advancements in the language itself, the need for more sophisticated and up-to-date ontology engineering services increases as well. While, for instance, there is active focus on new reasoners and optimisations, other services fall short of advancing at the same rate (it suffices to compare the number of freely-available reasoners with ontology editors). In particular, very little is understood about how ontologies evolve over time, and how reasoners’ performance varies as the input changes.Given the evolving nature of ontologies, detecting and presenting changes (via a so-called diff) between them is an essential engineering service, especially for version control systems or to support change analysis. In this thesis we address the diff problem for description logic (DL) based ontologies, specifically OWL 2 DL ontologies based on the SROIQ DL. The outcomes are novel algorithms employing both syntactic and semantic techniques to, firstly, detect axiom changes, and what terms had their meaning affected between ontologies, secondly, categorise their impact (for example, determining that an axiom is a stronger version of another), and finally, align changes appropriately, i.e., align source and target of axiom changes (so the stronger axiom with the weaker one, from our example), and axioms with the terms they affect.Subsequently, we present a theory of reasoner performance heterogeneity, based on field observations related to reasoner performance variability phenomena. Our hypothesis is that there exist two kinds of performance behaviour: an ontology/reasoner combination can be performance-homogeneous or performance-heterogeneous. Finally, we verify that performance-heterogeneous reasoner/ontology combinations contain small, performance-degrading sets of axioms, which we call hot spots. We devise a performance hot spot finding technique, and show that hot spots provide a promising basis for engineering efficient reasoners.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Computer Science
Publication date:
Location:
Manchester, UK
Total pages:
174
Abstract:
With the growing popularity of the Web Ontology Language (OWL) as a logic-based ontology language, as well as advancements in the language itself, the need for more sophisticated and up-to-date ontology engineering services increases as well. While, for instance, there is active focus on new reasoners and optimisations, other services fall short of advancing at the same rate (it suffices to compare the number of freely-available reasoners with ontology editors). In particular, very little is understood about how ontologies evolve over time, and how reasoners’ performance varies as the input changes.Given the evolving nature of ontologies, detecting and presenting changes (via a so-called diff) between them is an essential engineering service, especially for version control systems or to support change analysis. In this thesis we address the diff problem for description logic (DL) based ontologies, specifically OWL 2 DL ontologies based on the SROIQ DL. The outcomes are novel algorithms employing both syntactic and semantic techniques to, firstly, detect axiom changes, and what terms had their meaning affected between ontologies, secondly, categorise their impact (for example, determining that an axiom is a stronger version of another), and finally, align changes appropriately, i.e., align source and target of axiom changes (so the stronger axiom with the weaker one, from our example), and axioms with the terms they affect.Subsequently, we present a theory of reasoner performance heterogeneity, based on field observations related to reasoner performance variability phenomena. Our hypothesis is that there exist two kinds of performance behaviour: an ontology/reasoner combination can be performance-homogeneous or performance-heterogeneous. Finally, we verify that performance-heterogeneous reasoner/ontology combinations contain small, performance-degrading sets of axioms, which we call hot spots. We devise a performance hot spot finding technique, and show that hot spots provide a promising basis for engineering efficient reasoners.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:220347
Created by:
Goncalves, Joao Rafael
Created:
28th February, 2014, 09:13:27
Last modified by:
Goncalves, Joao Rafael
Last modified:
30th April, 2014, 14:43:16

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.