In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

ROBUSTNESS OF STEEL FRAMED BUILDINGS WITH PRE-CAST CONCRETE FLOOR SLABS

Miratashi Yazdi, Seyed Mansoor

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

Following some incidents in high-rise buildings, such as Ronan Point London 1968, in which collapse of a limited number of structural elements progressed to a failure disproportionate to the initial cause, consideration of robustness was introduced in British Standard. The main method of preventing progressive collapse for providing robustness to steel framed buildings with precast concrete floor slabs focuses on the allowable tying forces that the reinforcement in between the slabs and in hollowcores should carry. However there are uncertainties about the basis of the practical rules associated with this method. This thesis presents the results of numerical and analytical studies of tie connection behaviour between precast concrete floor slabs (PCFS). It is shown that under current design regulations the tie connection is not able to resist the accidental load limit applied on the damaged floor slabs. By establishing the capability of a finite element model to depict and predict the behaviour of concrete members in situations such as arching and catenary action against several experimental tests, an extensive set of parametric studies was conducted in order to identify the effective parameters in enhancing the resistance of the tie connection between PCFSs. These parameters include: tie bar diameter, position, length, yield stress and ultimate strain; the slab’s height, length; and the compressive strength of the grouting concrete in between the slabs that encases the tie bar. Recommendations are made based on the findings of this parametric study in order to increase the resistance of the tie connection. Based on the identified effective parameters in the parametric study a predictive analytical relationship is derived which is capable of determining the maximum vertical displacement and load that the tie connection is able to undergo. This relationship can be used to enable the connection to capture the accidental limit load on a damaged slab. The identified parameters are examined in a three dimensional finite element model to assess their effect when columns of the structure are lost in different locations such as an edge, corner or internal column. Based on the findings of this study methods for improving the connections performance are presented. Also the effect of alternative transverse tying method is evaluated and it is concluded that although this kind of tie increases the load carrying capacity of the connection, its effect on the catenary action is not significant.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Civil Engineering
Publication date:
Location:
Manchester, UK
Total pages:
203
Abstract:
Following some incidents in high-rise buildings, such as Ronan Point London 1968, in which collapse of a limited number of structural elements progressed to a failure disproportionate to the initial cause, consideration of robustness was introduced in British Standard. The main method of preventing progressive collapse for providing robustness to steel framed buildings with precast concrete floor slabs focuses on the allowable tying forces that the reinforcement in between the slabs and in hollowcores should carry. However there are uncertainties about the basis of the practical rules associated with this method. This thesis presents the results of numerical and analytical studies of tie connection behaviour between precast concrete floor slabs (PCFS). It is shown that under current design regulations the tie connection is not able to resist the accidental load limit applied on the damaged floor slabs. By establishing the capability of a finite element model to depict and predict the behaviour of concrete members in situations such as arching and catenary action against several experimental tests, an extensive set of parametric studies was conducted in order to identify the effective parameters in enhancing the resistance of the tie connection between PCFSs. These parameters include: tie bar diameter, position, length, yield stress and ultimate strain; the slab’s height, length; and the compressive strength of the grouting concrete in between the slabs that encases the tie bar. Recommendations are made based on the findings of this parametric study in order to increase the resistance of the tie connection. Based on the identified effective parameters in the parametric study a predictive analytical relationship is derived which is capable of determining the maximum vertical displacement and load that the tie connection is able to undergo. This relationship can be used to enable the connection to capture the accidental limit load on a damaged slab. The identified parameters are examined in a three dimensional finite element model to assess their effect when columns of the structure are lost in different locations such as an edge, corner or internal column. Based on the findings of this study methods for improving the connections performance are presented. Also the effect of alternative transverse tying method is evaluated and it is concluded that although this kind of tie increases the load carrying capacity of the connection, its effect on the catenary action is not significant.
Thesis advisor(s):
Language:
en

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:230762
Created by:
Miratashi Yazdi, Seyed Mansoor
Created:
7th August, 2014, 06:32:52
Last modified by:
Miratashi Yazdi, Seyed Mansoor
Last modified:
9th March, 2016, 21:14:00

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.