In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

Full-text held externally

University researcher(s)

Academic department(s)

An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action.

Gibbs, Julie; Ince, Louise; Matthews, Laura; Mei, Junjie; Bell, Thomas; Yang, Nan; Saer, Ben; Begley, Nicola; Poolman, Toryn; Pariollaud, Marie; Farrow, Stuart; DeMayo, Francesco; Hussell, Tracy; Worthen, G Scott; Ray, David; Loudon, Andrew

Nature medicine. 2014;20(8):919-26.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Full-text is available externally using the following links:

Full-text held externally

Abstract

The circadian system is an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and an impaired host response to Streptococcus pneumoniae infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. The therapeutic effects of the synthetic glucocorticoid dexamethasone depend on intact clock function in the airway. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and the magnitude of pulmonary inflammation and responses to bacterial infection.

Institutional metadata

University researcher(s):
Academic department(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:236671
Created by:
Loudon, Andrew
Created:
10th October, 2014, 12:48:39
Last modified by:
Loudon, Andrew
Last modified:
2nd November, 2015, 14:28:59

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.