In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The Neural Basis of Musical Consonance

Bones, Oliver

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

Three studies were designed to determine the relation between subcortical neural temporal coding and the perception of musical consonance. Consonance describes the pleasing perception of resolution and stability that occurs when musical notes with simple frequency ratios are combined. Recent work suggests that consonance is likely to be driven by the perception of ‘harmonicity’, i.e. the extent to which the frequency components of the combined spectrum of two or more notes share a common fundamental frequency and therefore resemble a single complex tone (McDermott et al, 2010, Curr Biol). The publication in Chapter 3 is a paper describing a method for measuring the harmonicity of neural phase locking represented by the frequency-following response (FFR). The FFR is a scalp-recorded auditory evoked potential, generated by neural phase locking and named from the characteristic peaks in the waveform with periods corresponding to the frequencies present in the fine structure and envelope of the stimulus. The studies in Chapters 4 and 5 demonstrate that this method predicts individual differences in the perception of consonance in young normal-hearing listeners, both with and without musical experience. The results of the study in Chapter 4 also demonstrate that phase locking to distortion products resulting from monaural cochlear interactions which enhance the harmonicity of the FFR may also increase the perceived pleasantness of consonant combinations of notes. The results of the study in Chapter 5 suggest that the FFR to two-note chords consisting of frequencies below 2500 Hz is likely to be generated in part by a basal region of the cochlea tuned to above this frequency range. The results of this study also demonstrate that the effects of high-frequency masking noise can be accounted for by a model of a saturating inner hair-cell receptor potential. Finally, the study in Chapter 6 demonstrates that age is related to a decline in the distinction between the representation of the harmonicity of consonant and dissonant dyads in the FFR, concurrent with a decline in the perceptual distinction between the pleasantness of consonant and dissonant dyads. Overall the results of the studies in this thesis provide evidence that consonance perception can be explained in part by subcortical neural temporal coding, and that age-related declines in temporal coding may underlie a decline in the perception of consonance.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Audiology
Publication date:
Location:
Manchester, UK
Total pages:
240
Abstract:
Three studies were designed to determine the relation between subcortical neural temporal coding and the perception of musical consonance. Consonance describes the pleasing perception of resolution and stability that occurs when musical notes with simple frequency ratios are combined. Recent work suggests that consonance is likely to be driven by the perception of ‘harmonicity’, i.e. the extent to which the frequency components of the combined spectrum of two or more notes share a common fundamental frequency and therefore resemble a single complex tone (McDermott et al, 2010, Curr Biol). The publication in Chapter 3 is a paper describing a method for measuring the harmonicity of neural phase locking represented by the frequency-following response (FFR). The FFR is a scalp-recorded auditory evoked potential, generated by neural phase locking and named from the characteristic peaks in the waveform with periods corresponding to the frequencies present in the fine structure and envelope of the stimulus. The studies in Chapters 4 and 5 demonstrate that this method predicts individual differences in the perception of consonance in young normal-hearing listeners, both with and without musical experience. The results of the study in Chapter 4 also demonstrate that phase locking to distortion products resulting from monaural cochlear interactions which enhance the harmonicity of the FFR may also increase the perceived pleasantness of consonant combinations of notes. The results of the study in Chapter 5 suggest that the FFR to two-note chords consisting of frequencies below 2500 Hz is likely to be generated in part by a basal region of the cochlea tuned to above this frequency range. The results of this study also demonstrate that the effects of high-frequency masking noise can be accounted for by a model of a saturating inner hair-cell receptor potential. Finally, the study in Chapter 6 demonstrates that age is related to a decline in the distinction between the representation of the harmonicity of consonant and dissonant dyads in the FFR, concurrent with a decline in the perceptual distinction between the pleasantness of consonant and dissonant dyads. Overall the results of the studies in this thesis provide evidence that consonance perception can be explained in part by subcortical neural temporal coding, and that age-related declines in temporal coding may underlie a decline in the perception of consonance.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Thesis advisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:236898
Created by:
Bones, Oliver
Created:
14th October, 2014, 03:42:08
Last modified by:
Bones, Oliver
Last modified:
17th January, 2015, 22:57:17

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.