In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The Development of Smart Sensors for Aquatic Water Quality Monitoring

Alexander, Craig

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

The focus of this project was to investigate the use of interdigitated electrodes (IDEs) as impedimetric ion-selective chemical sensors for the determination of several important analytes found within a freshwater aquarium. The overall aim of this research was to work towards a prototype sensing device that could eventually be developed into a commercial product for sale to aquarium owners.Polyvinyl chloride and sol-gels containing commercially-available ionophores for four aquarium-significant ions (NH4+, NO2-, NO3- and pH) were prepared and investigated for use within polymeric ion-selective membranes. Three separate IDE transducers were produced using either photolithography or screen-printing microfabrication techniques. A sinusoidal voltage was applied to the IDEs and an LCR meter was used to measure changes in the conductance and capacitance of the ion-selective membrane layer deposited over the electrode digits.Each ionophore, when tested within potentiometric ion-selective electrodes (ISEs), was found to be suitable for further investigation within IDE devices. Sol-gels were investigated as a potential membrane material for a coated wire electrode; however, poor response characteristics were observed. An IDE sensor fabricated in-house using lift-off photolithography and spin-coated with a polymeric membrane was found to produce non-selective responses caused by changes in the conductivity of the test solution. IDE devices with reduced geometric parameters were purchased and coated with a selective polymeric membrane. When the membrane was spin-coated, non-selective responses were observed; therefore, drop-coating of the membrane material was investigated. This initially resulted in an unacceptably long response time; however, this effect was reduced by decreasing the membrane solution viscosity prior to drop-coating. A fully-screen printed carbon IDE device was fabricated by incorporating the ionophore into a support matrix based on a commercial dielectric paste. Matrix interferences to the sensor response were reduced by printing ‘build-up’ layers over the sensing area prior to the ion-selective membrane.Two novel routes for monitoring the water quality of an aquarium, using IDE sensors fabricated by either photolithography or screen-printing, have been demonstrated. Due to the commercial aspect of this project, it is important to consider the final cost of producing these sensors. Both of the techniques used to produce ion-selective sensors require further experimentation to optimise the sensor response, prior to integration within a multi-analyte sensing prototype.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemical Engineering & Analytical Science (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
270
Abstract:
The focus of this project was to investigate the use of interdigitated electrodes (IDEs) as impedimetric ion-selective chemical sensors for the determination of several important analytes found within a freshwater aquarium. The overall aim of this research was to work towards a prototype sensing device that could eventually be developed into a commercial product for sale to aquarium owners.Polyvinyl chloride and sol-gels containing commercially-available ionophores for four aquarium-significant ions (NH4+, NO2-, NO3- and pH) were prepared and investigated for use within polymeric ion-selective membranes. Three separate IDE transducers were produced using either photolithography or screen-printing microfabrication techniques. A sinusoidal voltage was applied to the IDEs and an LCR meter was used to measure changes in the conductance and capacitance of the ion-selective membrane layer deposited over the electrode digits.Each ionophore, when tested within potentiometric ion-selective electrodes (ISEs), was found to be suitable for further investigation within IDE devices. Sol-gels were investigated as a potential membrane material for a coated wire electrode; however, poor response characteristics were observed. An IDE sensor fabricated in-house using lift-off photolithography and spin-coated with a polymeric membrane was found to produce non-selective responses caused by changes in the conductivity of the test solution. IDE devices with reduced geometric parameters were purchased and coated with a selective polymeric membrane. When the membrane was spin-coated, non-selective responses were observed; therefore, drop-coating of the membrane material was investigated. This initially resulted in an unacceptably long response time; however, this effect was reduced by decreasing the membrane solution viscosity prior to drop-coating. A fully-screen printed carbon IDE device was fabricated by incorporating the ionophore into a support matrix based on a commercial dielectric paste. Matrix interferences to the sensor response were reduced by printing ‘build-up’ layers over the sensing area prior to the ion-selective membrane.Two novel routes for monitoring the water quality of an aquarium, using IDE sensors fabricated by either photolithography or screen-printing, have been demonstrated. Due to the commercial aspect of this project, it is important to consider the final cost of producing these sensors. Both of the techniques used to produce ion-selective sensors require further experimentation to optimise the sensor response, prior to integration within a multi-analyte sensing prototype.
Additional digital content not deposited electronically:
N/A
Non-digital content not deposited electronically:
N/A
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:240607
Created by:
Alexander, Craig
Created:
22nd November, 2014, 11:59:23
Last modified by:
Alexander, Craig
Last modified:
9th September, 2016, 13:05:06

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.