In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

Full-text held externally

University researcher(s)

Identifying biological pathways that underlie primordial short stature using network analysis.

Hanson, Dan; Stevens, Adam; Murray, Philip G; Black, Graeme C M; Clayton, Peter E

Journal of molecular endocrinology. 2014;52(3):333-44.

Access to files

Full-text and supplementary files are not available from Manchester eScholar. Full-text is available externally using the following links:

Full-text held externally

Abstract

Mutations in CUL7, OBSL1 and CCDC8, leading to disordered ubiquitination, cause one of the commonest primordial growth disorders, 3-M syndrome. This condition is associated with i) abnormal p53 function, ii) GH and/or IGF1 resistance, which may relate to failure to recycle signalling molecules, and iii) cellular IGF2 deficiency. However the exact molecular mechanisms that may link these abnormalities generating growth restriction remain undefined. In this study, we have used immunoprecipitation/mass spectrometry and transcriptomic studies to generate a 3-M 'interactome', to define key cellular pathways and biological functions associated with growth failure seen in 3-M. We identified 189 proteins which interacted with CUL7, OBSL1 and CCDC8, from which a network including 176 of these proteins was generated. To strengthen the association to 3-M syndrome, these proteins were compared with an inferred network generated from the genes that were differentially expressed in 3-M fibroblasts compared with controls. This resulted in a final 3-M network of 131 proteins, with the most significant biological pathway within the network being mRNA splicing/processing. We have shown using an exogenous insulin receptor (INSR) minigene system that alternative splicing of exon 11 is significantly changed in HEK293 cells with altered expression of CUL7, OBSL1 and CCDC8 and in 3-M fibroblasts. The net result is a reduction in the expression of the mitogenic INSR isoform in 3-M syndrome. From these preliminary data, we hypothesise that disordered ubiquitination could result in aberrant mRNA splicing in 3-M; however, further investigation is required to determine whether this contributes to growth failure.

Bibliographic metadata

Type of resource:
Content type:
Publication type:
Published date:
Abbreviated journal title:
ISSN:
Place of publication:
England
Volume:
52
Issue:
3
Pagination:
333-44
Digital Object Identifier:
10.1530/JME-14-0029
Pubmed Identifier:
24711643
Pii Identifier:
JME-14-0029
Access state:
Active

Institutional metadata

University researcher(s):
Academic department(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:241397
Created by:
Black, Graeme
Created:
1st December, 2014, 09:02:31
Last modified by:
Black, Graeme
Last modified:
1st December, 2014, 09:02:31

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.