In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Microstructure and Corrosion Characteristics of Excimer Laser Melted Elektron 21-T6 Rare-Earth Magnesium Alloy

Shekhe, Ahmad Mustafa Abussalam b

[Thesis]. Manchester, UK: The University of Manchester; 2014.

Access to files

Abstract

The present study concerns the application of LSM using an excimer laser to enhance the corrosion resistance of rare-earth Elektron 21 magnesium alloy. The alloy has been treated by an excimer laser to produce a highly homogeneous and refined microstructure for improvement of corrosion resistance. The laser surface treatment was applied on two different prepared surfaces of the alloy; i) a ground surface up to 1200 SiC grit; ii) a chemically cleaned surface using CrO3 +AgNO3 boiling solution. The intermetallic phases within the α-matrix that are believed to initiate corrosion have been dissolved by two methods. The first is by the excimer laser, where they were dissolved in the melted layers. The second is by a chemical dissolution prior LSM. Variation of the laser parameters such as changed laser influence (low, medium and high) and increased number of pulses, resulted in formation of thicker melted layers, but promoted the formation of porosity and micro-cracks particularly at overlap regions. The initial stage of this study was aimed at optimising the laser conditions for production of a uniform microstructure, with an increase in the corrosion resistance of the alloy being determined by potentiodynamic polarization measurements in sodium chloride solution. A laser fluence of 6 and 7 J/cm2 with 10, 20, 25, 40 and 50 pulses with a different overlap ratio of 7%, 20% and 50% were subsequently selected as the optimum condition to treat the surface of the alloy. After laser treatment, the top surfaces and the cross-sections of the alloy showed a relatively homogenous melted layer and a significant reduction in the number of large intergranular Mg-Zn-RE phase was achieved resulting in a significant improvement of the corrosion resistance of the alloy.This work also investigated the mechanism of corrosion and the interaction between the intergranular Mg-Zn-RE phase, the Zr-rich regions within the grains and the bulk Mg-rich matrix. The results obtained by scanning electron microscopy (SEM) / energy-dispersive X-ray (EDX) and scanning Kelvin prop forced microscopy (SKPFM) potential map measurements as well as transmission electron microscopy (TEM) / energy-dispersive X-ray (EDX) have shown the importance of the microstructure in the initiation of corrosion in 3.5 wt% NaCl solution, where the Zr-rich regions played a distinct role in the early stages of corrosion in this alloy. However, the obtained results have demonstrated that such laser melted layers improved the corrosion resistance of the alloy, but further work is still needed to obtain the fully understanding of such behaviour which can better the research results, particularly the selectively chemical dissolution of the second phases prior LSM.The University of ManchesterDoctor of PhilosophyMr. Ahmad Mustafa ShekheThesis Title: Microstructure and Corrosion Characteristics of Excimer Laser Melted Elektron 21-T6 Rare-Earth Magnesium Alloy.01.12.2014

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials
Publication date:
Location:
Manchester, UK
Total pages:
275
Abstract:
The present study concerns the application of LSM using an excimer laser to enhance the corrosion resistance of rare-earth Elektron 21 magnesium alloy. The alloy has been treated by an excimer laser to produce a highly homogeneous and refined microstructure for improvement of corrosion resistance. The laser surface treatment was applied on two different prepared surfaces of the alloy; i) a ground surface up to 1200 SiC grit; ii) a chemically cleaned surface using CrO3 +AgNO3 boiling solution. The intermetallic phases within the α-matrix that are believed to initiate corrosion have been dissolved by two methods. The first is by the excimer laser, where they were dissolved in the melted layers. The second is by a chemical dissolution prior LSM. Variation of the laser parameters such as changed laser influence (low, medium and high) and increased number of pulses, resulted in formation of thicker melted layers, but promoted the formation of porosity and micro-cracks particularly at overlap regions. The initial stage of this study was aimed at optimising the laser conditions for production of a uniform microstructure, with an increase in the corrosion resistance of the alloy being determined by potentiodynamic polarization measurements in sodium chloride solution. A laser fluence of 6 and 7 J/cm2 with 10, 20, 25, 40 and 50 pulses with a different overlap ratio of 7%, 20% and 50% were subsequently selected as the optimum condition to treat the surface of the alloy. After laser treatment, the top surfaces and the cross-sections of the alloy showed a relatively homogenous melted layer and a significant reduction in the number of large intergranular Mg-Zn-RE phase was achieved resulting in a significant improvement of the corrosion resistance of the alloy.This work also investigated the mechanism of corrosion and the interaction between the intergranular Mg-Zn-RE phase, the Zr-rich regions within the grains and the bulk Mg-rich matrix. The results obtained by scanning electron microscopy (SEM) / energy-dispersive X-ray (EDX) and scanning Kelvin prop forced microscopy (SKPFM) potential map measurements as well as transmission electron microscopy (TEM) / energy-dispersive X-ray (EDX) have shown the importance of the microstructure in the initiation of corrosion in 3.5 wt% NaCl solution, where the Zr-rich regions played a distinct role in the early stages of corrosion in this alloy. However, the obtained results have demonstrated that such laser melted layers improved the corrosion resistance of the alloy, but further work is still needed to obtain the fully understanding of such behaviour which can better the research results, particularly the selectively chemical dissolution of the second phases prior LSM.The University of ManchesterDoctor of PhilosophyMr. Ahmad Mustafa ShekheThesis Title: Microstructure and Corrosion Characteristics of Excimer Laser Melted Elektron 21-T6 Rare-Earth Magnesium Alloy.01.12.2014
Thesis main supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:241490
Created by:
Shekhe, Ahmad
Created:
2nd December, 2014, 00:45:18
Last modified by:
Shekhe, Ahmad
Last modified:
9th September, 2016, 13:04:57

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.