In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Manipulating the Structural and Mechanical Properties of Ionic-Complementary Peptide Hydrogels

Gibbons, Jonathan

[Thesis]. Manchester, UK: The University of Manchester; 2015.

Access to files

Abstract

Hydrogels based on self-assembling peptides are believed to have potential for use in a wide range of biomedical and biodiagnostic applications. For many of these, control over various properties of the gels is essential for tuning the gels to fit certain constraints or requirements in terms physical properties such as diffusive properties and swelling. One important property to control for applications such as cell culture and drug delivery is its mechanical strength, and this study investigates three different strategies by which the individual peptide monomers can be modified in order to effect a change in the macromolecular self-assembled structure and therefore a bulk change in the mechanical stiffness.In chapter 4, two ionic-complementary octapeptides, FEFKFKFK and FEFQFKFK are described, with monomer charges of +2 and +1, respectively at physiological pH. FEFKFKFK was observed to form largely discrete fibrils, characteristic of similar systems, while FEFQFKFK formed fibril bundles – believed to be a limited form of an aggregation effect frequently seen in similar peptides with neutral charge. As a result of this structural change, FEFQFKFK was found to have values for the elastic and viscous moduli (which are often used to measure the ‘strength’ of a gel) between 5 and 10 times larger than those of FEFKFKFK at the same concentration. The same behaviour was seen in FEFKFKFK when the monomer charges were reversed by adjusting pH, suggesting that the monomer charge is indeed responsible for the bundling effect.In chapter 5, two branched peptides were designed and synthesized: KG17, with two arms consisting of self-assembling FKFEFKFK-motifs, and KG28 which had three such arms. Each branched peptide was doped into pure FKFEFKFK and the resulting gels investigated. While no obvious structural changes were observed for either dopant (save for a potential fibril parallelisation effect with KG17 observed in Small-Angle Neutron Scattering (SANS)), both were observed to increase the elastic and viscous moduli of the gels at overall peptide concentrations of 30 and 50 mg mL-1 (gels), but not at 10 mg mL-1 (viscous liquid). The most dramatic change was observed in the 50 mg mL-1 gels, suggesting that higher concentrations could enhance the effect of the dopants.In chapter 6, three thermo-responsive polymers (pTEGMA), of Degrees of polymerisation (DPs) 17, 47 and 142 were conjugated to CGFKFEFKFK and incorporated into a peptide hydrogel. Gels containing the non-conjugated versions of each polymer were also tested. While no changes in morphology were observed at the fibillar level, the polymer Lower Critical Solution Temperature (LCST) behaviour could be observed in SANS in all samples apart from the DP17 conjugate. However, in rheological tests gels doped with this conjugate appeared to show the strongest the elastic and viscous moduli. In general the conjugates appeared to increase the elastic and viscous moduli, particularly at temperatures above ca. 50°C. Rather than this being LCST behaviour, it was suggested that the polymers can act to enhance a natural thermo-response that was observed in the peptide, with the shortest polymer (DP17) experiencing the least steric hindrance and therefore having the strongest effect. It was postulated that this interaction could involve the screening of charge on the peptide fibril. Non-conjugated polymer appeared to have little effect on the mechanical properties, with elastic modulus values correlating strongly to the overall peptide concentration.

Layman's Abstract

Peptides are the naturally-occurring building blocks that make all of the proteins in the human body - from the keratin in your nails and hair to the haemoglobin that carries oxygen in your blood. Some peptides can be designed and engineered so that they arrange themselves into long strings when placed in water, and if these tangle up on each other it forms a mesh - like a three-dimensional netting. This netting is swollen with water and so can be used to house biological chemicals (such as proteins) and cells which need to be keep in a wet environment in order to function.For this reason, it is hoped that these materials (which are gels) could one day be used to help cultivate cells and for in medical uses such as reconstructive surgery and drug delivery.This research looks at ways of modifying the structure of the netting: Can we make netting where the peptide strings arranged as individuals or in bundles? Can the strings be physically linked to one-another? Can we add useful chemicals to the outside of the strings to give them a more complex function?

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemical Engineering & Analytical Science
Publication date:
Location:
Manchester, UK
Total pages:
246
Abstract:
Hydrogels based on self-assembling peptides are believed to have potential for use in a wide range of biomedical and biodiagnostic applications. For many of these, control over various properties of the gels is essential for tuning the gels to fit certain constraints or requirements in terms physical properties such as diffusive properties and swelling. One important property to control for applications such as cell culture and drug delivery is its mechanical strength, and this study investigates three different strategies by which the individual peptide monomers can be modified in order to effect a change in the macromolecular self-assembled structure and therefore a bulk change in the mechanical stiffness.In chapter 4, two ionic-complementary octapeptides, FEFKFKFK and FEFQFKFK are described, with monomer charges of +2 and +1, respectively at physiological pH. FEFKFKFK was observed to form largely discrete fibrils, characteristic of similar systems, while FEFQFKFK formed fibril bundles – believed to be a limited form of an aggregation effect frequently seen in similar peptides with neutral charge. As a result of this structural change, FEFQFKFK was found to have values for the elastic and viscous moduli (which are often used to measure the ‘strength’ of a gel) between 5 and 10 times larger than those of FEFKFKFK at the same concentration. The same behaviour was seen in FEFKFKFK when the monomer charges were reversed by adjusting pH, suggesting that the monomer charge is indeed responsible for the bundling effect.In chapter 5, two branched peptides were designed and synthesized: KG17, with two arms consisting of self-assembling FKFEFKFK-motifs, and KG28 which had three such arms. Each branched peptide was doped into pure FKFEFKFK and the resulting gels investigated. While no obvious structural changes were observed for either dopant (save for a potential fibril parallelisation effect with KG17 observed in Small-Angle Neutron Scattering (SANS)), both were observed to increase the elastic and viscous moduli of the gels at overall peptide concentrations of 30 and 50 mg mL-1 (gels), but not at 10 mg mL-1 (viscous liquid). The most dramatic change was observed in the 50 mg mL-1 gels, suggesting that higher concentrations could enhance the effect of the dopants.In chapter 6, three thermo-responsive polymers (pTEGMA), of Degrees of polymerisation (DPs) 17, 47 and 142 were conjugated to CGFKFEFKFK and incorporated into a peptide hydrogel. Gels containing the non-conjugated versions of each polymer were also tested. While no changes in morphology were observed at the fibillar level, the polymer Lower Critical Solution Temperature (LCST) behaviour could be observed in SANS in all samples apart from the DP17 conjugate. However, in rheological tests gels doped with this conjugate appeared to show the strongest the elastic and viscous moduli. In general the conjugates appeared to increase the elastic and viscous moduli, particularly at temperatures above ca. 50°C. Rather than this being LCST behaviour, it was suggested that the polymers can act to enhance a natural thermo-response that was observed in the peptide, with the shortest polymer (DP17) experiencing the least steric hindrance and therefore having the strongest effect. It was postulated that this interaction could involve the screening of charge on the peptide fibril. Non-conjugated polymer appeared to have little effect on the mechanical properties, with elastic modulus values correlating strongly to the overall peptide concentration.
Layman's abstract:
Peptides are the naturally-occurring building blocks that make all of the proteins in the human body - from the keratin in your nails and hair to the haemoglobin that carries oxygen in your blood. Some peptides can be designed and engineered so that they arrange themselves into long strings when placed in water, and if these tangle up on each other it forms a mesh - like a three-dimensional netting. This netting is swollen with water and so can be used to house biological chemicals (such as proteins) and cells which need to be keep in a wet environment in order to function.For this reason, it is hoped that these materials (which are gels) could one day be used to help cultivate cells and for in medical uses such as reconstructive surgery and drug delivery.This research looks at ways of modifying the structure of the netting: Can we make netting where the peptide strings arranged as individuals or in bundles? Can the strings be physically linked to one-another? Can we add useful chemicals to the outside of the strings to give them a more complex function?
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:259329
Created by:
Gibbons, Jonathan
Created:
12th February, 2015, 18:04:56
Last modified by:
Gibbons, Jonathan
Last modified:
27th March, 2015, 11:18:51

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.