In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    PHOTOSYNTHETIC ACCLIMATION TO LOWER LIGHT INTENSITY IN ARABIDOPSIS THALIANA

    Paee, Furzani

    [Thesis]. Manchester, UK: The University of Manchester; 2015.

    Access to files

    Abstract

    Photoacclimation is a process by which photosynthetic capacity is regulated inresponse to environmental adjustments in terms of light regime. Photoacclimation isessential in determining the photosynthetic capacity to optimize light use and to avoidpotentially damaging effects.Previous work in our laboratory has identified a gene, gpt2 (At1g61800) that isessential for plants to acclimate to an increase in growth irradiance. Furthermore, weobserved that the accession Columbia-0 (Col-0) is unable to respond to increases inlight. Therefore, a Quantitative Trait Locus (QTL) mapping analysis was performed inLandsberg erecta (Ler)/Columbia (Col) recombinant inbred line population to identifynovel genes responsible for this variation to acclimation.In order to investigate the photoacclimation in Arabidopsis thaliana,photosynthetic capacity was measured in plants of the accession Wassileskija (WS) andin plants lacking expression of the gene At1g61800 (WS-gpt2) during acclimation fromhigh to low light. Plants were grown for 6 weeks under high light (400 μmol.m-2.s-1) andhalf of them were transferred to low light (100 μmol.m-2.s-1) after six weeks. Gasexchange measurements were performed in order to measure the maximum capacity forphotosynthesis. Acclimation to a decrease in light resulted in a decrease in thephotosynthetic capacity in WS and WS-gpt2 plants. This shows that under lower orlimiting light, photosynthesis was slowed down.Chlorophyll fluorescence analysis was carried out to measure changes in thequantum efficiency of PSII (ΦPSII) and nonphotochemical quenching (NPQ) duringacclimation. ΦPSII decreased in both WS and WS-gpt2 plants showing that under lowlight, PSII is more saturated However, it was found that there was no significantchanges in NPQ level for both WS and WS-gpt2.To estimate the total chlorophyll and chl a/b ratio, a chlorophyll compositionanalysis was performed. There was no significant changes in the total chlorophyll forboth WS and WS-gpt2. However, the chlorophyll a/b ratio was seen to be decreased inlow light plants representing an increase in light harvesting complexes relative toreaction centre core.Plants of WS and WS-gpt2 were also grown under natural variable light in anunheated greenhouse in Manchester, UK. This experiment was carried out to study thephotosynthetic acclimation of plants under fluctuating light condition.A preliminary work on gene expression of gpt2 was conducted by doing reversetranscriptase PCR (RT-PCR). It shows that the gene expression of gpt2 decreasedfollowing transfer to low light plants in WS. Microarray analysis was also performed toinvestigate the role of GPT2 (if any) and to identify any potential gene that is importantin high to low light acclimation.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD Plant Sciences
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    154
    Abstract:
    Photoacclimation is a process by which photosynthetic capacity is regulated inresponse to environmental adjustments in terms of light regime. Photoacclimation isessential in determining the photosynthetic capacity to optimize light use and to avoidpotentially damaging effects.Previous work in our laboratory has identified a gene, gpt2 (At1g61800) that isessential for plants to acclimate to an increase in growth irradiance. Furthermore, weobserved that the accession Columbia-0 (Col-0) is unable to respond to increases inlight. Therefore, a Quantitative Trait Locus (QTL) mapping analysis was performed inLandsberg erecta (Ler)/Columbia (Col) recombinant inbred line population to identifynovel genes responsible for this variation to acclimation.In order to investigate the photoacclimation in Arabidopsis thaliana,photosynthetic capacity was measured in plants of the accession Wassileskija (WS) andin plants lacking expression of the gene At1g61800 (WS-gpt2) during acclimation fromhigh to low light. Plants were grown for 6 weeks under high light (400 μmol.m-2.s-1) andhalf of them were transferred to low light (100 μmol.m-2.s-1) after six weeks. Gasexchange measurements were performed in order to measure the maximum capacity forphotosynthesis. Acclimation to a decrease in light resulted in a decrease in thephotosynthetic capacity in WS and WS-gpt2 plants. This shows that under lower orlimiting light, photosynthesis was slowed down.Chlorophyll fluorescence analysis was carried out to measure changes in thequantum efficiency of PSII (ΦPSII) and nonphotochemical quenching (NPQ) duringacclimation. ΦPSII decreased in both WS and WS-gpt2 plants showing that under lowlight, PSII is more saturated However, it was found that there was no significantchanges in NPQ level for both WS and WS-gpt2.To estimate the total chlorophyll and chl a/b ratio, a chlorophyll compositionanalysis was performed. There was no significant changes in the total chlorophyll forboth WS and WS-gpt2. However, the chlorophyll a/b ratio was seen to be decreased inlow light plants representing an increase in light harvesting complexes relative toreaction centre core.Plants of WS and WS-gpt2 were also grown under natural variable light in anunheated greenhouse in Manchester, UK. This experiment was carried out to study thephotosynthetic acclimation of plants under fluctuating light condition.A preliminary work on gene expression of gpt2 was conducted by doing reversetranscriptase PCR (RT-PCR). It shows that the gene expression of gpt2 decreasedfollowing transfer to low light plants in WS. Microarray analysis was also performed toinvestigate the role of GPT2 (if any) and to identify any potential gene that is importantin high to low light acclimation.
    Thesis main supervisor(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:263719
    Created by:
    Paee, Furzani
    Created:
    30th April, 2015, 14:46:20
    Last modified by:
    Paee, Furzani
    Last modified:
    9th September, 2016, 13:00:58

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.