In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

FABRICATION AND CHARACTERISATION OF 3D MULTILAYER CIRCUITS FOR COMPACT MMIC APPLICATIONS

Kyabaggu, Peter Kalemeera Balwayo

[Thesis]. Manchester, UK: The University of Manchester; 2015.

Access to files

Abstract

The expansion of the market for wireless communications and sensors has led to the recent increase in demand for highly integrated MMICs for millimetre-wave wireless applications. These applications require MMICs that offer low cost, high integration, high functionality and high performance as well as simpler, more rapid development. An effective way of meeting these requirements and realising highly integrated MMICs is by employing multilayer three-dimensional (3-D) MMIC technology. The research work described in this thesis presents the modelling and characterisation of newly developed passive components such as coplanar waveguides (CPWs), thin-film microstrips (TFMSs) and transition transmission line structures using 3-D multilayer technology. These structures have been developed with low losses in mind, along with variable characteristic impedances and miniaturised size. With the knowledge obtained from the design and optimisation of CPW and TFMS transmission lines, new and improved compact CPW-to-TFMS transitions have been successfully achieved. Accurate electromagnetic modelling was carried out using the 2.5-dimensional ADS Momentum simulator. Newly improved fabrication techniques were employed to produce reported compact microwave components and circuits, in order to lower cost and simplify the process. Compact MMIC components were fabricated using a seven-layer fabrication procedure on semi-insulating GaAs substrate where pseudomorphic high electron mobility transistors (pHEMTs) pre-fabricated by the manufacturer. High frequency on-wafer RF measurements were carried out using Agilent 8510 series vector network analysers (VNAs). In-depth analysis and comparisons between the simulated and measured results are provided. Analysis of active MMIC components was achieved by developing small-signal equivalent circuits of the GaAs pHEMTs, and knowledge extracted from this analysis was employed in the development of large signal models of the pHEMT devices. Furthermore, the design and characterisation of a few MMIC circuits, such as limiters and amplifiers, demonstrates the integration of multilayer CPW passive components with prefabricated pHEMTs. These components are compatible with RF systems-on-chip sub-systems providing low cost, low loss performance with their ease of fabrication.

Keyword(s)

MMICS; MULTILAYER

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Electrical and Electronic Engineering
Publication date:
Location:
Manchester, UK
Total pages:
223
Abstract:
The expansion of the market for wireless communications and sensors has led to the recent increase in demand for highly integrated MMICs for millimetre-wave wireless applications. These applications require MMICs that offer low cost, high integration, high functionality and high performance as well as simpler, more rapid development. An effective way of meeting these requirements and realising highly integrated MMICs is by employing multilayer three-dimensional (3-D) MMIC technology. The research work described in this thesis presents the modelling and characterisation of newly developed passive components such as coplanar waveguides (CPWs), thin-film microstrips (TFMSs) and transition transmission line structures using 3-D multilayer technology. These structures have been developed with low losses in mind, along with variable characteristic impedances and miniaturised size. With the knowledge obtained from the design and optimisation of CPW and TFMS transmission lines, new and improved compact CPW-to-TFMS transitions have been successfully achieved. Accurate electromagnetic modelling was carried out using the 2.5-dimensional ADS Momentum simulator. Newly improved fabrication techniques were employed to produce reported compact microwave components and circuits, in order to lower cost and simplify the process. Compact MMIC components were fabricated using a seven-layer fabrication procedure on semi-insulating GaAs substrate where pseudomorphic high electron mobility transistors (pHEMTs) pre-fabricated by the manufacturer. High frequency on-wafer RF measurements were carried out using Agilent 8510 series vector network analysers (VNAs). In-depth analysis and comparisons between the simulated and measured results are provided. Analysis of active MMIC components was achieved by developing small-signal equivalent circuits of the GaAs pHEMTs, and knowledge extracted from this analysis was employed in the development of large signal models of the pHEMT devices. Furthermore, the design and characterisation of a few MMIC circuits, such as limiters and amplifiers, demonstrates the integration of multilayer CPW passive components with prefabricated pHEMTs. These components are compatible with RF systems-on-chip sub-systems providing low cost, low loss performance with their ease of fabrication.
Keyword(s):
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:263881
Created by:
Kyabaggu, Peter
Created:
6th May, 2015, 09:48:52
Last modified by:
Kyabaggu, Peter
Last modified:
9th September, 2016, 13:04:20

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.