In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

SPATIAL HEARING AND TEMPORAL PROCESSING IN OLD AND HEARING-IMPAIRED INDIVIDUALS

King, Andrew Jonathan

[Thesis]. Manchester, UK: The University of Manchester; 2015.

Access to files

Abstract

Small timing differences occur when sounds reach one ear before the other, creating interaural phase differences (IPDs). The phase-locked activity in the auditory nerve can, at low frequencies, preserve IPDs. IPDs are used for localising and separating sounds from different directions. Chapters 3, 5, and 6 report three studies of the independent effects of age and sensorineural hearing loss on the temporal processing of sound that aids spatial hearing. Chapters 2 and 4 describe two supporting methodological studies. Chapter 2 compared the duration of training required for stable IPD-discrimination thresholds for two stimulus presentation procedures. The procedure requiring the least training was adopted for subsequent studies. Age and hearing loss are related and both may affect sensitivity to IPDs. Chapter 3 demonstrated that hearing loss, regardless of listener age, is related to poorer sensitivity to IPDs in the temporal fine structure (TFS), but not in the temporal envelope. Chapter 3 also showed that age, independent of hearing loss, is related to poorer envelope-IPD sensitivity at low modulation rates, and somewhat poorer TFS-IPD sensitivity. In Chapter 5, listener age and IPD sensitivity were both compared to subcortical neural phase locking measured through the frequency-following response (FFR). Phase coherence in the envelope-FFR at 145 Hz modulation and in the TFS-FFR deteriorated with age, suggesting less precise phase locking in old age. However, age-related changes to IPD sensitivity were not strongly related to age-related changes in FFR phase coherence. IPD sensitivity declines may be predominantly caused by deterioration of binaural processing independent of subcortical phase locking. Chapter 4 showed that electrodes at the mastoids recorded TFS-FFR generated earlier in the auditory pathway than electrodes from the nape of the neck to forehead, which recorded FFR generated later in the brainstem. However, these electrode montages did not reveal different age- or hearing-loss-related FFR deficits in Chapter 5. Chapter 6 determined whether hearing loss affected the ability to use TFS IPDs to achieve better speech perception. On average, old hearing-impaired listeners gained a small, but significant, benefit from a lateral separation of the speech sources. Replacing the TFS with binaurally in-phase sine waves (removing the TFS IPDs) significantly reduced the benefit of lateral separation. How much a listener benefitted from intact TFS IPDs in speech perception was strongly related to the extent of their hearing loss at low frequencies and their monaural processing of TFS, but not to their ability to discriminate IPDs. In general, this thesis shows that low-frequency hearing loss is associated with poor sensitivity to TFS IPDs and the ability to benefit from them when sounds are laterally separated. The thesis also shows that old age can reduce sensitivity to IPDs and weaken subcortical temporal coding. Although only partly related, these effects are likely to cause problems for old individuals in challenging listening environments.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Audiology
Publication date:
Location:
Manchester, UK
Total pages:
201
Abstract:
Small timing differences occur when sounds reach one ear before the other, creating interaural phase differences (IPDs). The phase-locked activity in the auditory nerve can, at low frequencies, preserve IPDs. IPDs are used for localising and separating sounds from different directions. Chapters 3, 5, and 6 report three studies of the independent effects of age and sensorineural hearing loss on the temporal processing of sound that aids spatial hearing. Chapters 2 and 4 describe two supporting methodological studies. Chapter 2 compared the duration of training required for stable IPD-discrimination thresholds for two stimulus presentation procedures. The procedure requiring the least training was adopted for subsequent studies. Age and hearing loss are related and both may affect sensitivity to IPDs. Chapter 3 demonstrated that hearing loss, regardless of listener age, is related to poorer sensitivity to IPDs in the temporal fine structure (TFS), but not in the temporal envelope. Chapter 3 also showed that age, independent of hearing loss, is related to poorer envelope-IPD sensitivity at low modulation rates, and somewhat poorer TFS-IPD sensitivity. In Chapter 5, listener age and IPD sensitivity were both compared to subcortical neural phase locking measured through the frequency-following response (FFR). Phase coherence in the envelope-FFR at 145 Hz modulation and in the TFS-FFR deteriorated with age, suggesting less precise phase locking in old age. However, age-related changes to IPD sensitivity were not strongly related to age-related changes in FFR phase coherence. IPD sensitivity declines may be predominantly caused by deterioration of binaural processing independent of subcortical phase locking. Chapter 4 showed that electrodes at the mastoids recorded TFS-FFR generated earlier in the auditory pathway than electrodes from the nape of the neck to forehead, which recorded FFR generated later in the brainstem. However, these electrode montages did not reveal different age- or hearing-loss-related FFR deficits in Chapter 5. Chapter 6 determined whether hearing loss affected the ability to use TFS IPDs to achieve better speech perception. On average, old hearing-impaired listeners gained a small, but significant, benefit from a lateral separation of the speech sources. Replacing the TFS with binaurally in-phase sine waves (removing the TFS IPDs) significantly reduced the benefit of lateral separation. How much a listener benefitted from intact TFS IPDs in speech perception was strongly related to the extent of their hearing loss at low frequencies and their monaural processing of TFS, but not to their ability to discriminate IPDs. In general, this thesis shows that low-frequency hearing loss is associated with poor sensitivity to TFS IPDs and the ability to benefit from them when sounds are laterally separated. The thesis also shows that old age can reduce sensitivity to IPDs and weaken subcortical temporal coding. Although only partly related, these effects are likely to cause problems for old individuals in challenging listening environments.
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:268522
Created by:
King, Andrew
Created:
14th July, 2015, 21:38:07
Last modified by:
King, Andrew
Last modified:
9th September, 2016, 12:55:32

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.