In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Dispersion, Assembly and Electrochemistry of Graphene at the Liquid|Liquid Interface

Rodgers, Andrew Norman John

[Thesis]. Manchester, UK: The University of Manchester; 2015.

Access to files

Abstract

The dispersion of graphene in 1,2-dichloroethane (DCE), its subsequent attachment at the water|DCE interface and the reduction of oxygen at the water|DCE interface proceeding via interfacial graphene have been investigated.Using addition of an electrolyte which screens surface charge, it was found that electrostatic repulsions play a significant role in determining the kinetic stability of lyophobic non-aqueous graphene dispersions. The onset of aggregation was determined and it was found that dispersions prepared from higher-oxygen content graphite were more stable than those prepared from lower-oxygen content graphite, indicating that oxygen content is important in determining the surface charge on graphene in non-aqueous dispersion.The presence of organic electrolyte was also found to promote assembly of graphene into a coherent film at the liquid|liquid interface. Measurement of the liquid|liquid interfacial tension and three-phase contact angle revealed that the energetics of particle attachment did not change in the presence of organic electrolyte, thus indicating a mechanism of inter-particle electrostatic repulsion minimisation through surface charge screening.Interfacial graphene was found to display a catalytic effect toward the oxygen reduction reaction at the water|DCE interface. A bipolar cell was developed which showed that this reaction occurs heterogeneously, with graphene acting as a conduit for electrons across the water|DCE interface.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Chemistry (42 month)
Publication date:
Location:
Manchester, UK
Total pages:
327
Abstract:
The dispersion of graphene in 1,2-dichloroethane (DCE), its subsequent attachment at the water|DCE interface and the reduction of oxygen at the water|DCE interface proceeding via interfacial graphene have been investigated.Using addition of an electrolyte which screens surface charge, it was found that electrostatic repulsions play a significant role in determining the kinetic stability of lyophobic non-aqueous graphene dispersions. The onset of aggregation was determined and it was found that dispersions prepared from higher-oxygen content graphite were more stable than those prepared from lower-oxygen content graphite, indicating that oxygen content is important in determining the surface charge on graphene in non-aqueous dispersion.The presence of organic electrolyte was also found to promote assembly of graphene into a coherent film at the liquid|liquid interface. Measurement of the liquid|liquid interfacial tension and three-phase contact angle revealed that the energetics of particle attachment did not change in the presence of organic electrolyte, thus indicating a mechanism of inter-particle electrostatic repulsion minimisation through surface charge screening.Interfacial graphene was found to display a catalytic effect toward the oxygen reduction reaction at the water|DCE interface. A bipolar cell was developed which showed that this reaction occurs heterogeneously, with graphene acting as a conduit for electrons across the water|DCE interface.
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:276305
Created by:
Rodgers, Andrew
Created:
26th October, 2015, 12:35:36
Last modified by:
Rodgers, Andrew
Last modified:
9th September, 2016, 13:04:20

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.