In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Damage Mechanisms Associated with Kink-Band Formation in Unidirectional Fibre composites

Wang, Ying

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

The compressive strength of unidirectional (UD) carbon fibre reinforced plastics (CFRPs) is often only 60-70% of their tensile strength owing to premature failure associated with kink-band formation. The sudden and complex nature of kink-band formation has been hindering the progress in experimental studies on the evolution of damage in compressive failure. A better understanding of the damage mechanisms associated with kink-band formation can help to design more reliable composite structures. Therefore, the principal aim of this project is to identify, in three dimensions (3D), the key damage mechanisms underlying the initiation and propagation of kink bands in UD carbon fibre/epoxy composite.A new manufacturing method is developed to fabricate high-quality UD T700/epoxy cylindrical rods for axial compression tests and high-resolution imaging of kink bands by post mortem and in situ X-ray computed tomography (CT). The morphology of kink bands is visualised in 3D by segmenting fibre breaks at kink-band boundaries and representative longitudinal splits. The geometrical parameters of each fully developed kink band are consistent through the specimen. Radiographs obtained from ultra-fast synchrotron imaging show that a kink band initiates and propagates across the specimen in less than 1.2 ms. A scenario of kink-band failure is proposed: fibre buckling and longitudinal splitting occur prior to fibre breakage, which forms kink-band boundaries and eventually the morphology of multiple kink bands develops suddenly.3D tomographs of the fast and unstable kink-band formation could not be captured in the axial compression experiments. Therefore, a testing method of loading notched UD carbon fibre (T800, T700 and T300)/epoxy beams using a four-point bending (FPB) fixture is developed to enable monitoring of more stable initiation and propagation of kink bands by in situ X-ray CT. Kink-band formation is significantly slowed in the FPB tests. Fibre micro-buckling accompanied by splitting, could initiate the formation of kink bands. In the T700/epoxy system, the early initiation stage of fibre micro-buckling without fracture is captured, and the critical radius of curvature of unbroken fibres prior to fracture is ~130μm. Unloading causes significant recovery of fibre curvature (radius of curvature ~280 μm) and a reduction of 10-20º in fibre rotation angle within the kink band. The results show that in situ 3D characterisation of kink bands is essential as fibre buckling is a 3D phenomenon, resulting in development of both in-plane and out-of-plane kink bands.Understanding of kink-band formation in 3D will help to establish strategies to improve the compressive strength of CFRP composites by depressing kink-band formation; in this respect lateral constraint conferred by strong interfaces is a key aspect.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials
Publication date:
Location:
Manchester, UK
Total pages:
207
Abstract:
The compressive strength of unidirectional (UD) carbon fibre reinforced plastics (CFRPs) is often only 60-70% of their tensile strength owing to premature failure associated with kink-band formation. The sudden and complex nature of kink-band formation has been hindering the progress in experimental studies on the evolution of damage in compressive failure. A better understanding of the damage mechanisms associated with kink-band formation can help to design more reliable composite structures. Therefore, the principal aim of this project is to identify, in three dimensions (3D), the key damage mechanisms underlying the initiation and propagation of kink bands in UD carbon fibre/epoxy composite.A new manufacturing method is developed to fabricate high-quality UD T700/epoxy cylindrical rods for axial compression tests and high-resolution imaging of kink bands by post mortem and in situ X-ray computed tomography (CT). The morphology of kink bands is visualised in 3D by segmenting fibre breaks at kink-band boundaries and representative longitudinal splits. The geometrical parameters of each fully developed kink band are consistent through the specimen. Radiographs obtained from ultra-fast synchrotron imaging show that a kink band initiates and propagates across the specimen in less than 1.2 ms. A scenario of kink-band failure is proposed: fibre buckling and longitudinal splitting occur prior to fibre breakage, which forms kink-band boundaries and eventually the morphology of multiple kink bands develops suddenly.3D tomographs of the fast and unstable kink-band formation could not be captured in the axial compression experiments. Therefore, a testing method of loading notched UD carbon fibre (T800, T700 and T300)/epoxy beams using a four-point bending (FPB) fixture is developed to enable monitoring of more stable initiation and propagation of kink bands by in situ X-ray CT. Kink-band formation is significantly slowed in the FPB tests. Fibre micro-buckling accompanied by splitting, could initiate the formation of kink bands. In the T700/epoxy system, the early initiation stage of fibre micro-buckling without fracture is captured, and the critical radius of curvature of unbroken fibres prior to fracture is ~130μm. Unloading causes significant recovery of fibre curvature (radius of curvature ~280 μm) and a reduction of 10-20º in fibre rotation angle within the kink band. The results show that in situ 3D characterisation of kink bands is essential as fibre buckling is a 3D phenomenon, resulting in development of both in-plane and out-of-plane kink bands.Understanding of kink-band formation in 3D will help to establish strategies to improve the compressive strength of CFRP composites by depressing kink-band formation; in this respect lateral constraint conferred by strong interfaces is a key aspect.
Thesis main supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:294266
Created by:
Wang, Ying
Created:
5th January, 2016, 14:33:14
Last modified by:
Wang, Ying
Last modified:
1st December, 2017, 09:08:35

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.