In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Regulation of vascular smooth muscle actin cytoskeleton by Hic-5

Pieri, Maria

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

Vascular smooth muscle cells (VSMC) constitute an important component of blood vessels and are primarily responsible for vessel contraction. In vascular disorders such as hypertension and atherosclerosis as well as pregnancy and exercise, VSMC demonstrate increased capacity to proliferate and migrate, resulting in vascular remodelling. The actin cytoskeleton is an important component of vascular contractility and is also essential for proliferation and migration of VSMC. Vasoactive agonists such as Endothelin-1 (ET-1) and Noradrenaline (NA), have been shown to mediate VSMC contraction through changes in actin cytoskeleton and focal adhesion (FA) remodelling, and have also been reported to cause VSMC migration in the appropriate setting.The aim of this study was to investigate the signalling mechanisms responsible for FA dependent actin cytoskeleton remodelling of VSMC in response to ET-1 and NA, with a special focus on Hydrogen peroxide-inducible clone 5 (Hic-5). The latter is a FA protein shown to regulate actin cytoskeleton dynamics in small arteries in response to Noradrenaline (NA) and the response of VSMC to arterial injury and abdominal aortic aneurysm.We have shown that Src-dependent tyrosine phosphorylation of Hic-5 regulated its subcellular localisation in mouse embryonic fibroblasts and VSMC, but was not responsible for the effects of ET-1 and NA on actin filament remodelling or Hic-5 redistribution in VSMC. ET-1 stimulation caused an increase in Hic-5 localisation at FAs concurrent with an increase in the density of actin filaments, whereas NA stimulation caused a decrease in Hic-5 localisation at FAs in VSMC concurrent with actin filament redistribution at the cell cortex. Hic-5 was the FA protein that demonstrated the most dramatic changes in subcellular localisation in response to ET-1 and NA, when compared to paxillin (Hic-5 homologue) or vinculin (classical FA marker). NA-mediated changes in Hic-5 localisation and actin filament distribution were more pronounced compared to ET-1-mediated changes. Further investigation into the NA-induced changes suggested that actin filament disassembly preceded Hic-5 relocalisation from FAs to the cytosol.These results show that vasoactive peptides cause Hic-5 relocalisation and actin filament rearrangement in VSMCs in an agonist-dependent manner. Given that VSMC FA remodelling and actin cytoskeleton reorganisation occur during contraction and arterial remodelling, our data identify Hic-5 as a key regulator of these processes in response to NA and ET-1. Furthermore, these data have implications in agonist- specific VSM function such as migration and contraction.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Medicine (Cardiovascular Sciences) 4 yr
Publication date:
Location:
Manchester, UK
Total pages:
183
Abstract:
Vascular smooth muscle cells (VSMC) constitute an important component of blood vessels and are primarily responsible for vessel contraction. In vascular disorders such as hypertension and atherosclerosis as well as pregnancy and exercise, VSMC demonstrate increased capacity to proliferate and migrate, resulting in vascular remodelling. The actin cytoskeleton is an important component of vascular contractility and is also essential for proliferation and migration of VSMC. Vasoactive agonists such as Endothelin-1 (ET-1) and Noradrenaline (NA), have been shown to mediate VSMC contraction through changes in actin cytoskeleton and focal adhesion (FA) remodelling, and have also been reported to cause VSMC migration in the appropriate setting.The aim of this study was to investigate the signalling mechanisms responsible for FA dependent actin cytoskeleton remodelling of VSMC in response to ET-1 and NA, with a special focus on Hydrogen peroxide-inducible clone 5 (Hic-5). The latter is a FA protein shown to regulate actin cytoskeleton dynamics in small arteries in response to Noradrenaline (NA) and the response of VSMC to arterial injury and abdominal aortic aneurysm.We have shown that Src-dependent tyrosine phosphorylation of Hic-5 regulated its subcellular localisation in mouse embryonic fibroblasts and VSMC, but was not responsible for the effects of ET-1 and NA on actin filament remodelling or Hic-5 redistribution in VSMC. ET-1 stimulation caused an increase in Hic-5 localisation at FAs concurrent with an increase in the density of actin filaments, whereas NA stimulation caused a decrease in Hic-5 localisation at FAs in VSMC concurrent with actin filament redistribution at the cell cortex. Hic-5 was the FA protein that demonstrated the most dramatic changes in subcellular localisation in response to ET-1 and NA, when compared to paxillin (Hic-5 homologue) or vinculin (classical FA marker). NA-mediated changes in Hic-5 localisation and actin filament distribution were more pronounced compared to ET-1-mediated changes. Further investigation into the NA-induced changes suggested that actin filament disassembly preceded Hic-5 relocalisation from FAs to the cytosol.These results show that vasoactive peptides cause Hic-5 relocalisation and actin filament rearrangement in VSMCs in an agonist-dependent manner. Given that VSMC FA remodelling and actin cytoskeleton reorganisation occur during contraction and arterial remodelling, our data identify Hic-5 as a key regulator of these processes in response to NA and ET-1. Furthermore, these data have implications in agonist- specific VSM function such as migration and contraction.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:294745
Created by:
Pieri, Maria
Created:
11th January, 2016, 17:41:21
Last modified by:
Pieri, Maria
Last modified:
16th November, 2017, 12:37:50

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.