In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

Related resources

University researcher(s)

    Academic department(s)

    Peroxiredoxins: Yeast redox switches that regulate multiple cellular pathways

    Kritsiligkou, Paraskevi

    [Thesis]. Manchester, UK: The University of Manchester; 2016.

    Access to files

    Abstract

    Peroxiredoxins are small ubiquitous cysteine-containing proteins that exhibit high reactivity to hydrogen peroxide. Apart from their role as antioxidants, detoxifying hydrogen peroxide to water, peroxiredoxins have been implicated in other cellular processes, such as protein folding and signalling. Using S. cerevisiae as a model organism, we utilised a variety of techniques to examine previously unexplored links between peroxiredoxins and mitochondrial function. Firstly, we characterised the role of Gpx3 in yeast mitochondria. Proteomic work revealed the presence of Gpx3 in the mitochondrial intermembrane space (IMS) and we characterised when, how and why Gpx3 can be found within the mitochondria. We showed that cells lacking Gpx3 have aberrant mitochondrial morphology and defective protein import capacity and inner membrane potential upon H2O2 stress. Gpx3 translocates to the IMS via a targeting sequence encoded from a non-AUG codon. This provides a novel and unique molecular mechanism that protects mitochondria from the exceptional oxidative stress which their activity imposes.Secondly, we focused on the role of Tsa1 upon protein aggregation-induced stress. Previous studies using the proline analogue AZC to cause protein misfolding revealed that protein aggregates are localised adjacent to mitochondria and mitochondrial ROS are generated in response. We questioned what effect this might have on mitochondrial function and we showed that upon AZC treatment there is a drop in respiratory rate, dependent on Tsa1. We questioned whether Tsa1, like other peroxiredoxins, is involved in regulating signalling cascades and we showed that cells that are lacking Tsa1 have alterations in the activity of the cAMP/PKA pathway. In parallel, we looked for differences both in the proteome and the transcriptome to understand what is the cause of the lethality of a tsa1 strain upon protein aggregation stress. We propose a mechanism where Tsa1 mediates a transcriptional response to protein misfolding stress via the activity of the heat shock transcription factor, Hsf1. Finally, we focused on the role of the mitochondrial peroxiredoxin Prx1. Under conditions where the mitochondrial matrix is oxidised, either genetically or by chemical addition, we showed than an apoptotic pathway is activated, dependent on the redox state of thioredoxin, Trx3. We showed that Trx3 can interact with Prx1 and loss of Prx1 also stops the induction of cell death. Analysis of the interactome of Trx3 unraveled the involvement of Bxl1/Ybh3, the yeast BH3 domain-containing protein and Aim9, a previously uncharacterised protein with kinase-like motifs, in the progression of cell death. The data presented in this thesis widens our understanding of the function of peroxiredoxins and their involvement in the regulation of cellular cascades that ensure correct mitochondrial function and responses to stress.

    Bibliographic metadata

    Type of resource:
    Content type:
    Form of thesis:
    Type of submission:
    Degree type:
    Doctor of Philosophy
    Degree programme:
    PhD Wellcome Trust - Molecular and Cell Biology
    Publication date:
    Location:
    Manchester, UK
    Total pages:
    218
    Abstract:
    Peroxiredoxins are small ubiquitous cysteine-containing proteins that exhibit high reactivity to hydrogen peroxide. Apart from their role as antioxidants, detoxifying hydrogen peroxide to water, peroxiredoxins have been implicated in other cellular processes, such as protein folding and signalling. Using S. cerevisiae as a model organism, we utilised a variety of techniques to examine previously unexplored links between peroxiredoxins and mitochondrial function. Firstly, we characterised the role of Gpx3 in yeast mitochondria. Proteomic work revealed the presence of Gpx3 in the mitochondrial intermembrane space (IMS) and we characterised when, how and why Gpx3 can be found within the mitochondria. We showed that cells lacking Gpx3 have aberrant mitochondrial morphology and defective protein import capacity and inner membrane potential upon H2O2 stress. Gpx3 translocates to the IMS via a targeting sequence encoded from a non-AUG codon. This provides a novel and unique molecular mechanism that protects mitochondria from the exceptional oxidative stress which their activity imposes.Secondly, we focused on the role of Tsa1 upon protein aggregation-induced stress. Previous studies using the proline analogue AZC to cause protein misfolding revealed that protein aggregates are localised adjacent to mitochondria and mitochondrial ROS are generated in response. We questioned what effect this might have on mitochondrial function and we showed that upon AZC treatment there is a drop in respiratory rate, dependent on Tsa1. We questioned whether Tsa1, like other peroxiredoxins, is involved in regulating signalling cascades and we showed that cells that are lacking Tsa1 have alterations in the activity of the cAMP/PKA pathway. In parallel, we looked for differences both in the proteome and the transcriptome to understand what is the cause of the lethality of a tsa1 strain upon protein aggregation stress. We propose a mechanism where Tsa1 mediates a transcriptional response to protein misfolding stress via the activity of the heat shock transcription factor, Hsf1. Finally, we focused on the role of the mitochondrial peroxiredoxin Prx1. Under conditions where the mitochondrial matrix is oxidised, either genetically or by chemical addition, we showed than an apoptotic pathway is activated, dependent on the redox state of thioredoxin, Trx3. We showed that Trx3 can interact with Prx1 and loss of Prx1 also stops the induction of cell death. Analysis of the interactome of Trx3 unraveled the involvement of Bxl1/Ybh3, the yeast BH3 domain-containing protein and Aim9, a previously uncharacterised protein with kinase-like motifs, in the progression of cell death. The data presented in this thesis widens our understanding of the function of peroxiredoxins and their involvement in the regulation of cellular cascades that ensure correct mitochondrial function and responses to stress.
    Thesis main supervisor(s):
    Thesis co-supervisor(s):
    Funder(s):
    Language:
    en

    Institutional metadata

    University researcher(s):
    Academic department(s):

    Record metadata

    Manchester eScholar ID:
    uk-ac-man-scw:297717
    Created by:
    Kritsiligkou, Paraskevi
    Created:
    23rd February, 2016, 17:40:47
    Last modified by:
    Kritsiligkou, Paraskevi
    Last modified:
    9th January, 2019, 09:51:21

    Can we help?

    The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.