In April 2016 Manchester eScholar was replaced by the University of Manchester’s new Research Information Management System, Pure. In the autumn the University’s research outputs will be available to search and browse via a new Research Portal. Until then the University’s full publication record can be accessed via a temporary portal and the old eScholar content is available to search and browse via this archive.

The Development of Functional Peptide Scaffolds for Cell Culture

Szkolar, Laura

[Thesis]. Manchester, UK: The University of Manchester; 2016.

Access to files

Abstract

Peptides and peptide derivatives have shown great scope as biomaterials and for biomedicaltherapy application. It has been demonstrated that classes of these peptides can form fibrillar hydrogels making them a good candidate for ECM mimics. In particular, the ionic complementary peptides, composed of alternating hydrophobic and hydrophilic amino acidshave been reported as successful cell scaffolds. The simple structure of such ionic complementary peptides is generally seen to spontaneously self-assemble into β-sheet richfibrils in the presence of water. The highly aqueous environment, along with the inter meshing of fibres, results in an architecture akin to the natural ECM of the body, making peptide hydrogels highly suitable as cell culture scaffolds. The structure of such hydrogels, usually comprising 8-32 amino acids, has been widely reported as easily modifiable, thus, allowing for control of the final material properties.This study explores the potential use of a range of ionic-complementary peptides for the culture of primary bovine chondrocytes. Modifications and additions to peptide sequence, such as charge and amino acid substitution, were investigated. In all studies only 1 design parameter (sequence, charge etc.) was varied, to allow for better understanding of the effect of materials properties upon cell response.The encapsulation of primary bovine chondrocytes was undertaken, with the aim of providing a suitable cell scaffold capable of maintaining chondrocyte viability and function in vitro. Despite in vivo work being beyond the scope of this thesis, the properties of the hydrogel scaffold were designed with final aim of being suitable for use with matrix associated autologous chondrocyte implantation (MACI) in clinical therapy.

Bibliographic metadata

Type of resource:
Content type:
Form of thesis:
Type of submission:
Degree type:
Doctor of Philosophy
Degree programme:
PhD Materials (42 months)
Publication date:
Location:
Manchester, UK
Total pages:
264
Abstract:
Peptides and peptide derivatives have shown great scope as biomaterials and for biomedicaltherapy application. It has been demonstrated that classes of these peptides can form fibrillar hydrogels making them a good candidate for ECM mimics. In particular, the ionic complementary peptides, composed of alternating hydrophobic and hydrophilic amino acidshave been reported as successful cell scaffolds. The simple structure of such ionic complementary peptides is generally seen to spontaneously self-assemble into β-sheet richfibrils in the presence of water. The highly aqueous environment, along with the inter meshing of fibres, results in an architecture akin to the natural ECM of the body, making peptide hydrogels highly suitable as cell culture scaffolds. The structure of such hydrogels, usually comprising 8-32 amino acids, has been widely reported as easily modifiable, thus, allowing for control of the final material properties.This study explores the potential use of a range of ionic-complementary peptides for the culture of primary bovine chondrocytes. Modifications and additions to peptide sequence, such as charge and amino acid substitution, were investigated. In all studies only 1 design parameter (sequence, charge etc.) was varied, to allow for better understanding of the effect of materials properties upon cell response.The encapsulation of primary bovine chondrocytes was undertaken, with the aim of providing a suitable cell scaffold capable of maintaining chondrocyte viability and function in vitro. Despite in vivo work being beyond the scope of this thesis, the properties of the hydrogel scaffold were designed with final aim of being suitable for use with matrix associated autologous chondrocyte implantation (MACI) in clinical therapy.
Thesis main supervisor(s):
Thesis co-supervisor(s):
Funder(s):
Language:
en

Institutional metadata

University researcher(s):

Record metadata

Manchester eScholar ID:
uk-ac-man-scw:298798
Created by:
Szkolar, Laura
Created:
16th March, 2016, 15:36:50
Last modified by:
Szkolar, Laura
Last modified:
1st December, 2017, 09:08:51

Can we help?

The library chat service will be available from 11am-3pm Monday to Friday (excluding Bank Holidays). You can also email your enquiry to us.